A Neural Predictive Model of Negative Emotions for COVID-19

可解释性 人工神经网络 意识的神经相关物 人口 人工智能 心理学 2019年冠状病毒病(COVID-19) 机器学习 计算机科学 医学 疾病 精神科 认知 环境卫生 病理 传染病(医学专业)
作者
Yu Mao,Dongtao Wei,Wenjing Yang,Qunlin Chen,Jie Sun,Yaxu Yu,Li Yu,Kaixiang Zhuang,Xiaoqin Wang,Li He,Tao Feng,Lei Xu,Qinghua He,Hong Chen,Shaozheng Qin,Yunzhe Liu,Jiang Qiu
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 2646-2656 被引量:6
标识
DOI:10.1109/taffc.2022.3181671
摘要

The long-lasting global pandemic of Coronavirus disease 2019 (COVID-19) has changed our daily life in many ways and put heavy burden on our mental health. Having a predictive model of negative emotions during COVID-19 is of great importance for identifying potential risky population. To establish a neural predictive model achieving both good interpretability and predictivity, we have utilized a large-scale (n = 542) longitudinal dataset, alongside two independent samples for external validation. We built a predictive model based on psychologically meaningful resting state neural activities. The whole-brain resting-state neural activity and social-psychological profile of the subjects were obtained from Sept. to Dec. 2019 (Time 1). Their negative emotions were tracked and re-assessed twice, on Feb 22 (Time 2) and Apr 24 (Time 3), 2020, respectively. We first applied canonical correlation analysis on both the neural profiles and psychological profiles collected on Time 1, this step selects only the psychological meaningful neural patterns for later model construction. We then trained the neural predictive model using those identified features on data obtained on Time 2. It achieved a good prediction performance (r = 0.44, p = 8.13 × 10 -27 ). The two most important neural predictors are associated with self-control and social interaction. This study established an effective neural prediction model of negative emotions, achieving good interpretability and predictivity. It will be useful for identifying potential risky population of emotional disorders related to COVID-19.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怕黑的小蘑菇完成签到,获得积分10
1秒前
搜集达人应助keren采纳,获得10
1秒前
善学以致用应助鱼鱼吖采纳,获得10
2秒前
2秒前
yyyyy发布了新的文献求助10
2秒前
kepler完成签到,获得积分10
2秒前
小天才完成签到,获得积分20
4秒前
天空之下发布了新的文献求助10
4秒前
在水一方应助阔达的唇膏采纳,获得10
4秒前
璐璐姐最牛逼完成签到,获得积分10
4秒前
曲水流觞给曲水流觞的求助进行了留言
6秒前
善学以致用应助大丸子采纳,获得10
6秒前
桐桐应助轻松的仇血采纳,获得10
8秒前
Yuanyuan发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
英姑应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
无极微光应助科研通管家采纳,获得20
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
12秒前
小熊维C完成签到,获得积分10
14秒前
Jin完成签到,获得积分20
14秒前
传奇3应助依紫采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317