A Neural Predictive Model of Negative Emotions for COVID-19

可解释性 人工神经网络 意识的神经相关物 人口 人工智能 心理学 2019年冠状病毒病(COVID-19) 机器学习 计算机科学 医学 疾病 精神科 认知 环境卫生 病理 传染病(医学专业)
作者
Yu Mao,Dongtao Wei,Wenjing Yang,Qunlin Chen,Jie Sun,Yaxu Yu,Li Yu,Kaixiang Zhuang,Xiaoqin Wang,Li He,Tao Feng,Lei Xu,Qinghua He,Hong Chen,Shaozheng Qin,Yunzhe Liu,Jiang Qiu
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 2646-2656 被引量:6
标识
DOI:10.1109/taffc.2022.3181671
摘要

The long-lasting global pandemic of Coronavirus disease 2019 (COVID-19) has changed our daily life in many ways and put heavy burden on our mental health. Having a predictive model of negative emotions during COVID-19 is of great importance for identifying potential risky population. To establish a neural predictive model achieving both good interpretability and predictivity, we have utilized a large-scale (n = 542) longitudinal dataset, alongside two independent samples for external validation. We built a predictive model based on psychologically meaningful resting state neural activities. The whole-brain resting-state neural activity and social-psychological profile of the subjects were obtained from Sept. to Dec. 2019 (Time 1). Their negative emotions were tracked and re-assessed twice, on Feb 22 (Time 2) and Apr 24 (Time 3), 2020, respectively. We first applied canonical correlation analysis on both the neural profiles and psychological profiles collected on Time 1, this step selects only the psychological meaningful neural patterns for later model construction. We then trained the neural predictive model using those identified features on data obtained on Time 2. It achieved a good prediction performance (r = 0.44, p = 8.13 × 10 -27 ). The two most important neural predictors are associated with self-control and social interaction. This study established an effective neural prediction model of negative emotions, achieving good interpretability and predictivity. It will be useful for identifying potential risky population of emotional disorders related to COVID-19.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卢伟泽发布了新的文献求助10
1秒前
1秒前
1秒前
无私航空完成签到,获得积分10
1秒前
鲫鱼炖豆腐完成签到 ,获得积分10
3秒前
上官若男应助lzy采纳,获得10
3秒前
黑斑白马完成签到,获得积分10
4秒前
朴素友桃完成签到,获得积分10
5秒前
6秒前
6秒前
8秒前
9秒前
9秒前
充电宝应助ppat5012采纳,获得10
9秒前
10秒前
123发布了新的文献求助10
11秒前
Hello应助谷粱紫槐采纳,获得10
11秒前
Zeze完成签到,获得积分10
11秒前
机智猴完成签到,获得积分10
11秒前
11秒前
BowieHuang应助666采纳,获得10
12秒前
钱大大完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
阿黎发布了新的文献求助30
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
Maestro_S应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
Maestro_S应助科研通管家采纳,获得10
15秒前
15秒前
Maestro_S应助科研通管家采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465