A Neural Predictive Model of Negative Emotions for COVID-19

可解释性 人工神经网络 意识的神经相关物 人口 人工智能 心理学 2019年冠状病毒病(COVID-19) 机器学习 计算机科学 医学 疾病 精神科 认知 环境卫生 病理 传染病(医学专业)
作者
Yu Mao,Dongtao Wei,Wenjing Yang,Qunlin Chen,Jie Sun,Yaxu Yu,Li Yu,Kaixiang Zhuang,Xiaoqin Wang,Li He,Tao Feng,Lei Xu,Qinghua He,Hong Chen,Shaozheng Qin,Yunzhe Liu,Jiang Qiu
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 2646-2656 被引量:6
标识
DOI:10.1109/taffc.2022.3181671
摘要

The long-lasting global pandemic of Coronavirus disease 2019 (COVID-19) has changed our daily life in many ways and put heavy burden on our mental health. Having a predictive model of negative emotions during COVID-19 is of great importance for identifying potential risky population. To establish a neural predictive model achieving both good interpretability and predictivity, we have utilized a large-scale (n = 542) longitudinal dataset, alongside two independent samples for external validation. We built a predictive model based on psychologically meaningful resting state neural activities. The whole-brain resting-state neural activity and social-psychological profile of the subjects were obtained from Sept. to Dec. 2019 (Time 1). Their negative emotions were tracked and re-assessed twice, on Feb 22 (Time 2) and Apr 24 (Time 3), 2020, respectively. We first applied canonical correlation analysis on both the neural profiles and psychological profiles collected on Time 1, this step selects only the psychological meaningful neural patterns for later model construction. We then trained the neural predictive model using those identified features on data obtained on Time 2. It achieved a good prediction performance (r = 0.44, p = 8.13 × 10 -27 ). The two most important neural predictors are associated with self-control and social interaction. This study established an effective neural prediction model of negative emotions, achieving good interpretability and predictivity. It will be useful for identifying potential risky population of emotional disorders related to COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BlingBling完成签到,获得积分10
刚刚
1秒前
swsn完成签到 ,获得积分10
1秒前
sx发布了新的文献求助10
1秒前
1秒前
洁净的天佑完成签到,获得积分20
2秒前
1111发布了新的文献求助10
2秒前
哦哦完成签到,获得积分10
2秒前
含蓄的小熊猫完成签到 ,获得积分10
2秒前
烟雾里完成签到 ,获得积分10
2秒前
Akim应助A拉拉拉采纳,获得10
2秒前
2秒前
小黄同学爱学习完成签到 ,获得积分10
2秒前
转山转水转出了自我完成签到,获得积分10
3秒前
pw完成签到 ,获得积分10
3秒前
xdf完成签到,获得积分10
3秒前
非对称转录完成签到,获得积分10
4秒前
ff完成签到,获得积分10
4秒前
nyfz2002发布了新的文献求助10
4秒前
清川映叶完成签到,获得积分10
5秒前
不舍天真完成签到,获得积分10
5秒前
winwin完成签到,获得积分10
5秒前
拉长的傲旋应助鹏gg采纳,获得500
6秒前
李健完成签到 ,获得积分10
7秒前
zhou完成签到,获得积分10
7秒前
SYLH应助加油采纳,获得50
7秒前
7秒前
9秒前
JQKing完成签到,获得积分10
10秒前
10秒前
10秒前
冯尔蓝完成签到,获得积分10
10秒前
11秒前
无私诗云完成签到,获得积分10
11秒前
科yt完成签到,获得积分10
11秒前
Tici完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
火星上的铃铛完成签到,获得积分10
11秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471687
求助须知:如何正确求助?哪些是违规求助? 3064600
关于积分的说明 9089012
捐赠科研通 2755276
什么是DOI,文献DOI怎么找? 1511947
邀请新用户注册赠送积分活动 698621
科研通“疑难数据库(出版商)”最低求助积分说明 698494