已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Neural Predictive Model of Negative Emotions for COVID-19

可解释性 人工神经网络 意识的神经相关物 人口 人工智能 心理学 2019年冠状病毒病(COVID-19) 机器学习 计算机科学 医学 疾病 精神科 认知 环境卫生 病理 传染病(医学专业)
作者
Yu Mao,Dongtao Wei,Wenjing Yang,Qunlin Chen,Jie Sun,Yaxu Yu,Li Yu,Kaixiang Zhuang,Xiaoqin Wang,Li He,Tao Feng,Lei Xu,Qinghua He,Hong Chen,Shaozheng Qin,Yunzhe Liu,Jiang Qiu
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 2646-2656 被引量:6
标识
DOI:10.1109/taffc.2022.3181671
摘要

The long-lasting global pandemic of Coronavirus disease 2019 (COVID-19) has changed our daily life in many ways and put heavy burden on our mental health. Having a predictive model of negative emotions during COVID-19 is of great importance for identifying potential risky population. To establish a neural predictive model achieving both good interpretability and predictivity, we have utilized a large-scale (n = 542) longitudinal dataset, alongside two independent samples for external validation. We built a predictive model based on psychologically meaningful resting state neural activities. The whole-brain resting-state neural activity and social-psychological profile of the subjects were obtained from Sept. to Dec. 2019 (Time 1). Their negative emotions were tracked and re-assessed twice, on Feb 22 (Time 2) and Apr 24 (Time 3), 2020, respectively. We first applied canonical correlation analysis on both the neural profiles and psychological profiles collected on Time 1, this step selects only the psychological meaningful neural patterns for later model construction. We then trained the neural predictive model using those identified features on data obtained on Time 2. It achieved a good prediction performance (r = 0.44, p = 8.13 × 10 -27 ). The two most important neural predictors are associated with self-control and social interaction. This study established an effective neural prediction model of negative emotions, achieving good interpretability and predictivity. It will be useful for identifying potential risky population of emotional disorders related to COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科研小驴完成签到 ,获得积分20
刚刚
1秒前
ohh发布了新的文献求助10
3秒前
666发布了新的文献求助10
4秒前
orixero应助小米采纳,获得10
7秒前
frank发布了新的文献求助30
8秒前
无极微光应助祁青采纳,获得20
11秒前
Ava应助枫树狐狸采纳,获得10
12秒前
LBJ23发布了新的文献求助10
12秒前
14秒前
天天快乐应助666采纳,获得10
15秒前
16秒前
TT发布了新的文献求助20
17秒前
18秒前
可爱的函函应助yl采纳,获得10
18秒前
msn00发布了新的文献求助10
19秒前
KYT2025发布了新的文献求助10
20秒前
frank完成签到,获得积分10
20秒前
ZhaohuaXie应助shejiawei采纳,获得30
20秒前
Orange应助月月采纳,获得10
23秒前
苹果夜梦完成签到 ,获得积分10
24秒前
18635986106应助科研通管家采纳,获得10
25秒前
邓佳鑫Alan应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
邓佳鑫Alan应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
邓佳鑫Alan应助科研通管家采纳,获得10
25秒前
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
ZhaohuaXie应助Luffa采纳,获得10
25秒前
25秒前
25秒前
HM琛应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
18635986106应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
李健应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493139
求助须知:如何正确求助?哪些是违规求助? 4591135
关于积分的说明 14433416
捐赠科研通 4523765
什么是DOI,文献DOI怎么找? 2478466
邀请新用户注册赠送积分活动 1463482
关于科研通互助平台的介绍 1436175