A Neural Predictive Model of Negative Emotions for COVID-19

可解释性 人工神经网络 意识的神经相关物 人口 人工智能 心理学 2019年冠状病毒病(COVID-19) 机器学习 计算机科学 医学 疾病 精神科 认知 环境卫生 病理 传染病(医学专业)
作者
Yu Mao,Dongtao Wei,Wenjing Yang,Qunlin Chen,Jie Sun,Yaxu Yu,Li Yu,Kaixiang Zhuang,Xiaoqin Wang,Li He,Tao Feng,Lei Xu,Qinghua He,Hong Chen,Shaozheng Qin,Yunzhe Liu,Jiang Qiu
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 2646-2656 被引量:6
标识
DOI:10.1109/taffc.2022.3181671
摘要

The long-lasting global pandemic of Coronavirus disease 2019 (COVID-19) has changed our daily life in many ways and put heavy burden on our mental health. Having a predictive model of negative emotions during COVID-19 is of great importance for identifying potential risky population. To establish a neural predictive model achieving both good interpretability and predictivity, we have utilized a large-scale (n = 542) longitudinal dataset, alongside two independent samples for external validation. We built a predictive model based on psychologically meaningful resting state neural activities. The whole-brain resting-state neural activity and social-psychological profile of the subjects were obtained from Sept. to Dec. 2019 (Time 1). Their negative emotions were tracked and re-assessed twice, on Feb 22 (Time 2) and Apr 24 (Time 3), 2020, respectively. We first applied canonical correlation analysis on both the neural profiles and psychological profiles collected on Time 1, this step selects only the psychological meaningful neural patterns for later model construction. We then trained the neural predictive model using those identified features on data obtained on Time 2. It achieved a good prediction performance (r = 0.44, p = 8.13 × 10 -27 ). The two most important neural predictors are associated with self-control and social interaction. This study established an effective neural prediction model of negative emotions, achieving good interpretability and predictivity. It will be useful for identifying potential risky population of emotional disorders related to COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宁波完成签到,获得积分0
1秒前
sue完成签到,获得积分10
2秒前
3秒前
慕青应助害羞的山柏采纳,获得10
4秒前
平常的可乐完成签到 ,获得积分10
6秒前
深情安青应助momo采纳,获得10
7秒前
852应助王汉韬采纳,获得10
7秒前
Anmaterchem1完成签到,获得积分10
8秒前
潘善若发布了新的文献求助10
8秒前
西西完成签到,获得积分10
11秒前
乐乐应助潘善若采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
小小完成签到,获得积分10
14秒前
西瓜汁完成签到,获得积分10
15秒前
向日葵完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
17秒前
18秒前
王汉韬发布了新的文献求助10
19秒前
19秒前
21秒前
鸢也完成签到,获得积分10
21秒前
22秒前
110发布了新的文献求助10
23秒前
24秒前
露露发布了新的文献求助10
24秒前
坚定路人完成签到,获得积分10
25秒前
潘善若发布了新的文献求助10
26秒前
SciGPT应助沈清酌采纳,获得10
27秒前
28秒前
28秒前
29秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
天天快乐应助科研通管家采纳,获得10
32秒前
英俊的铭应助科研通管家采纳,获得10
32秒前
英俊的铭应助科研通管家采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158