A radiomics nomogram for predicting the meningioma grade based on enhanced T1WI images

列线图 无线电技术 脑膜瘤 接收机工作特性 曲线下面积 医学 核医学 放射科 内科学
作者
Chongfeng Duan,Xiaoming Zhou,Jiachen Wang,Nan Li,Fang Liu,Song Gao,Xuejun Liu,Wenjian Xu
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1137) 被引量:9
标识
DOI:10.1259/bjr.20220141
摘要

The objective of this study was to develop a radiomics nomogram for predicting the meningioma grade based on enhanced T1 weighted imaging (T1WI) images.188 patients with meningioma were analyzed retrospectively. There were 94 high-grade meningioma to form high-grade group and 94 low-grade meningioma were selected randomly to form low-grade group. Clinical data and MRI features were analyzed and compared. The clinical model was built by using the significant variables. The least absolute shrinkage and selection operator regression was used to select the most valuable radiomics feature. The radiomics signature was built and the Rad-score was calculated. The radiomics nomogram was developed by the significant variables of the clinical factors and Rad-score. The calibration curve and the Hosmer-Lemeshow test were used to evaluate the radiomics nomogram. Different models were compared by Delong test and decision curve analysis curve.The sex, size and surrounding invasion were used to build clinical model. The area under the receiver operator characteristic curve (AUC) of clinical model was 0.870 (95% CI: 0.782-0.959). Nine features were used to construct the radiomics signature. The AUC of the radiomics signature was 0.885 (95% CI: 0.802-0.968). The AUC of radiomics nomogram was 0.952 (95% CI: 0.904-1). The AUC of radiomics nomogram was higher than that of clinical model and radiomics signature with a significant difference (p<0.05). The decision curve analysis curve showed that the radiomics nomogram had a larger net benefit than the clinical model and radiomics signature.The radiomics nomogram based on enhanced T1 weighted imaging images for predicting the meningioma grade showed high predictive value and might contribute to the diagnosis and treatment of meningioma.1. We first constructed a radiomic nomogram to predict the meningioma grade.2. We compared the results of the clinical model, radiomics signature and radiomics nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123321发布了新的文献求助10
刚刚
无花果应助小超人采纳,获得10
2秒前
gdh发布了新的文献求助10
3秒前
Manxi发布了新的文献求助10
3秒前
3秒前
3秒前
甜甜玫瑰应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
HAL应助科研通管家采纳,获得10
4秒前
4秒前
Maestro_S应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
甜甜玫瑰应助科研通管家采纳,获得10
4秒前
Maestro_S应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
HAL应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Maestro_S应助科研通管家采纳,获得10
5秒前
5秒前
nininidoc完成签到,获得积分10
6秒前
8秒前
zsgot3完成签到,获得积分10
8秒前
zy驳回了今后应助
9秒前
斯文明杰发布了新的文献求助10
9秒前
Iwan完成签到,获得积分10
9秒前
可爱的函函应助美好忆南采纳,获得10
10秒前
10秒前
Manxi完成签到,获得积分10
11秒前
光翟君完成签到,获得积分20
11秒前
超级的白竹完成签到,获得积分20
11秒前
12秒前
12秒前
hkh发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033