A radiomics nomogram for predicting the meningioma grade based on enhanced T1WI images

列线图 无线电技术 脑膜瘤 接收机工作特性 曲线下面积 医学 核医学 放射科 内科学
作者
Chongfeng Duan,Xiaoming Zhou,Jiachen Wang,Nan Li,Fang Liu,Song Gao,Xuejun Liu,Wenjian Xu
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:95 (1137) 被引量:9
标识
DOI:10.1259/bjr.20220141
摘要

The objective of this study was to develop a radiomics nomogram for predicting the meningioma grade based on enhanced T1 weighted imaging (T1WI) images.188 patients with meningioma were analyzed retrospectively. There were 94 high-grade meningioma to form high-grade group and 94 low-grade meningioma were selected randomly to form low-grade group. Clinical data and MRI features were analyzed and compared. The clinical model was built by using the significant variables. The least absolute shrinkage and selection operator regression was used to select the most valuable radiomics feature. The radiomics signature was built and the Rad-score was calculated. The radiomics nomogram was developed by the significant variables of the clinical factors and Rad-score. The calibration curve and the Hosmer-Lemeshow test were used to evaluate the radiomics nomogram. Different models were compared by Delong test and decision curve analysis curve.The sex, size and surrounding invasion were used to build clinical model. The area under the receiver operator characteristic curve (AUC) of clinical model was 0.870 (95% CI: 0.782-0.959). Nine features were used to construct the radiomics signature. The AUC of the radiomics signature was 0.885 (95% CI: 0.802-0.968). The AUC of radiomics nomogram was 0.952 (95% CI: 0.904-1). The AUC of radiomics nomogram was higher than that of clinical model and radiomics signature with a significant difference (p<0.05). The decision curve analysis curve showed that the radiomics nomogram had a larger net benefit than the clinical model and radiomics signature.The radiomics nomogram based on enhanced T1 weighted imaging images for predicting the meningioma grade showed high predictive value and might contribute to the diagnosis and treatment of meningioma.1. We first constructed a radiomic nomogram to predict the meningioma grade.2. We compared the results of the clinical model, radiomics signature and radiomics nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
边港洋发布了新的文献求助10
1秒前
3秒前
3秒前
香蕉觅云应助唠叨的悟空采纳,获得10
5秒前
hh完成签到,获得积分10
5秒前
温柔的访梦完成签到 ,获得积分10
7秒前
懒羊羊完成签到 ,获得积分10
7秒前
Heidi发布了新的文献求助10
8秒前
8秒前
9秒前
玄音完成签到,获得积分10
10秒前
cui完成签到,获得积分10
11秒前
温倩男发布了新的文献求助20
12秒前
霸气雪珍发布了新的文献求助10
14秒前
唠叨的悟空完成签到,获得积分10
16秒前
17秒前
21秒前
科研通AI2S应助负责的莫茗采纳,获得10
21秒前
tyanna发布了新的文献求助10
25秒前
25秒前
阳光海云应助利好采纳,获得10
28秒前
linn发布了新的文献求助10
29秒前
Ayla雁翎完成签到 ,获得积分10
31秒前
自由的银耳汤完成签到 ,获得积分10
31秒前
贪玩的芸完成签到,获得积分10
34秒前
34秒前
Heidi完成签到,获得积分10
36秒前
负责的莫茗完成签到,获得积分10
36秒前
38秒前
贪玩的芸发布了新的文献求助30
38秒前
43秒前
47秒前
49秒前
49秒前
孔半仙完成签到,获得积分10
50秒前
深情安青应助浩二采纳,获得10
51秒前
52秒前
孔半仙发布了新的文献求助10
53秒前
55秒前
55秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162987
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902734
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187