DPProm: A Two-Layer Predictor for Identifying Promoters and Their Types on Phage Genome Using Deep Learning

基因组 发起人 人工智能 计算机科学 卷积神经网络 计算生物学 基因组学 深度学习 比较基因组学 计算基因组学 特征(语言学) 稳健性(进化) DNA测序 DNA微阵列 基因 生物 遗传学 基因表达 哲学 语言学
作者
Chen Wang,Junyin Zhang,Li Cheng,Jiawei Wu,Minfeng Xiao,Junfeng Xia,Yannan Bin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 5258-5266 被引量:4
标识
DOI:10.1109/jbhi.2022.3193224
摘要

With the number of phage genomes increasing, it is urgent to develop new bioinformatics methods for phage genome annotation. Promoter, a DNA region, is important for gene transcriptional regulation. In the era of post-genomics, the availability of data makes it possible to establish computational models for promoter identification with robustness. In this work, we introduce DPProm, a two-layer model composed of DPProm-1L and DPProm-2L, to predict promoters and their types for phages. On the first layer, as a dual-channel deep neural network ensemble method fusing multi-view features (sequence feature and handcrafted feature), the model DPProm-1L is proposed to identify whether a DNA sequence is a promoter or non-promoter. The sequence feature is extracted with convolutional neural network (CNN). And the handcrafted feature is the combination of free energy, GC content, cumulative skew, and Z curve features. On the second layer, DPProm-2L based on CNN is trained to predict the promoters' types (host or phage). For the realization of prediction on the whole genomes, the model DPProm, combines with a novel sequence data processing workflow, which contains sliding window and merging sequences modules. Experimental results show that DPProm outperforms the state-of-the-art methods, and decreases the false positive rate effectively on whole genome prediction. Furthermore, we provide a user-friendly web at http://bioinfo.ahu.edu.cn/DPProm. We expect that DPProm can serve as a useful tool for identification of promoters and their types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dahai完成签到,获得积分10
1秒前
WO完成签到,获得积分10
3秒前
香蕉觅云应助没有昵称采纳,获得10
4秒前
4秒前
kkking发布了新的文献求助10
5秒前
无名完成签到,获得积分10
5秒前
5秒前
5秒前
7秒前
aaaa完成签到,获得积分10
7秒前
7秒前
小吴完成签到,获得积分20
7秒前
7秒前
8秒前
自然冬云发布了新的文献求助10
8秒前
lejiannnn完成签到,获得积分10
8秒前
9秒前
Singularity应助魏伯安采纳,获得10
9秒前
9秒前
小吴发布了新的文献求助10
11秒前
zzc发布了新的文献求助10
12秒前
暴0901发布了新的文献求助10
12秒前
一颗药顽发布了新的文献求助10
12秒前
hachii发布了新的文献求助10
12秒前
小马甲应助zzzyq采纳,获得10
13秒前
Hello应助kkking采纳,获得10
13秒前
13秒前
lulu发布了新的文献求助10
14秒前
自觉灵完成签到,获得积分10
15秒前
16秒前
大方硬币关注了科研通微信公众号
17秒前
李爱国应助my采纳,获得10
18秒前
慕青应助my采纳,获得10
18秒前
大个应助my采纳,获得10
18秒前
Ava应助my采纳,获得10
18秒前
CipherSage应助my采纳,获得10
18秒前
科目三应助my采纳,获得10
18秒前
qc完成签到,获得积分10
18秒前
Eric发布了新的文献求助10
20秒前
动听牛排应助11采纳,获得10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488795
求助须知:如何正确求助?哪些是违规求助? 3076316
关于积分的说明 9144818
捐赠科研通 2768620
什么是DOI,文献DOI怎么找? 1519286
邀请新用户注册赠送积分活动 703714
科研通“疑难数据库(出版商)”最低求助积分说明 701985