A comparison of methods to address item non-response when testing for differential item functioning in multidimensional patient-reported outcome measures

缺少数据 差异项目功能 统计 I类和II类错误 插补(统计学) 稳健性(进化) 项目反应理论 数学 计算机科学 计量经济学 心理测量学 生物化学 基因 化学
作者
Olawale F Ayilara,Tolulope T Sajobi,Ruth Barclay,Eric Bohm,Mohammad Jafari Jozani,Lisa M. Lix
出处
期刊:Quality of Life Research [Springer Nature]
卷期号:31 (9): 2837-2848
标识
DOI:10.1007/s11136-022-03129-8
摘要

PurposeItem non-response (i.e., missing data) may mask the detection of differential item functioning (DIF) in patient-reported outcome measures or result in biased DIF estimates. Non-response can be challenging to address in ordinal data. We investigated an unsupervised machine-learning method for ordinal item-level imputation and compared it with commonly-used item non-response methods when testing for DIF.MethodsComputer simulation and real-world data were used to assess several item non-response methods using the item response theory likelihood ratio test for DIF. The methods included: (a) list-wise deletion (LD), (b) half-mean imputation (HMI), (c) full information maximum likelihood (FIML), and (d) non-negative matrix factorization (NNMF), which adopts a machine-learning approach to impute missing values. Control of Type I error rates were evaluated using a liberal robustness criterion for α = 0.05 (i.e., 0.025–0.075). Statistical power was assessed with and without adoption of an item non-response method; differences > 10% were considered substantial.ResultsType I error rates for detecting DIF using LD, FIML and NNMF methods were controlled within the bounds of the robustness criterion for > 95% of simulation conditions, although the NNMF occasionally resulted in inflated rates. The HMI method always resulted in inflated error rates with 50% missing data. Differences in power to detect moderate DIF effects for LD, FIML and NNMF methods were substantial with 50% missing data and otherwise insubstantial.ConclusionThe NNMF method demonstrated comparable performance to commonly-used non-response methods. This computationally-efficient method represents a promising approach to address item-level non-response when testing for DIF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助安陌煜采纳,获得10
2秒前
羊羊羊完成签到,获得积分10
3秒前
4秒前
义气雍发布了新的文献求助10
10秒前
TongKY完成签到 ,获得积分10
10秒前
隐形曼青应助QI采纳,获得10
10秒前
FF完成签到 ,获得积分10
11秒前
公西傲蕾完成签到,获得积分10
13秒前
15秒前
15秒前
安陌煜发布了新的文献求助30
17秒前
不远完成签到,获得积分10
17秒前
17秒前
拾捌发布了新的文献求助10
19秒前
upon完成签到,获得积分10
19秒前
QI完成签到,获得积分10
21秒前
22秒前
shining完成签到,获得积分10
22秒前
Tom完成签到,获得积分10
25秒前
25秒前
yunna_ning完成签到,获得积分10
26秒前
赘婿应助x5kyi采纳,获得30
27秒前
myheat发布了新的文献求助10
27秒前
卡丁完成签到 ,获得积分10
29秒前
秋寒陈酿完成签到,获得积分10
31秒前
义气雍发布了新的文献求助10
31秒前
Ava应助不爱洗澡的小玲采纳,获得10
32秒前
不配.应助RuiminXie采纳,获得10
34秒前
不爱吃醋发布了新的文献求助30
37秒前
40秒前
40秒前
41秒前
43秒前
Xulyun完成签到 ,获得积分10
43秒前
46秒前
可咳咳咳发布了新的文献求助10
46秒前
46秒前
我是老大应助科研通管家采纳,获得10
48秒前
传奇3应助科研通管家采纳,获得10
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079