A Floating‐Gate‐Like Transistor Based on InSe vdW Heterostructure with High‐Performance Synaptic Characteristics

神经形态工程学 长时程增强 材料科学 光电子学 兴奋性突触后电位 突触可塑性 神经促进 突触后电位 晶体管 瓶颈 神经科学 突触 异质结 计算机科学 物理 电气工程 化学 电压 人工神经网络 生物 工程类 嵌入式系统 人工智能 受体 生物化学 抑制性突触后电位
作者
Jiachen Wang,Qilitai Wang,Qian Chen,Ting Lei,Weiming Lv,Huayao Tu,Rui Hu,Yipeng Wang,Zhongming Zeng,Tieying Ma
出处
期刊:Physica Status Solidi A-applications and Materials Science [Wiley]
卷期号:219 (13) 被引量:9
标识
DOI:10.1002/pssa.202200156
摘要

With the arrival of the “von Neumann bottleneck,” neuromorphic systems are receiving a lot of attention from scholars as an innovative technology by mimicking the massive parallelism and low‐power operation of the human brain. Herein, a floating‐gate‐like device constructed by the InSe/hBN/O 2 ‐hBN van der Waals heterostructure, where the defective O 2 ‐hBN plays the central role to trap charges, is proposed. This well‐designed device is proved to realize the synaptic functions under UV laser irradiation, such as short‐term plasticity (STP), long‐term plasticity (LTP), paired‐pulse facilitation (PPF), and long‐term potentiation/long‐term depression (LTP/LTD). Especially, the synaptic weight of excitatory postsynaptic current (EPSC) reaches as high as 10 4 %, it reaches the highest standard of this kind of device in recent years, and remains above 300% synaptic weight after 200 s, thus successfully imitating the LTP in biological synapses. The key factors of LTP/LTD curves are overall excellent and can be optimized with input pulses: nonlinearity value can reach 3.32/2.35, and G max / G min above 10 is achieved. The InSe floating‐gate‐like device with O 2 ‐hBN layer provides an alternative for better and more practical synaptic performances in the field of neuromorphic architectures based on 2D materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缪缪发布了新的文献求助10
1秒前
老实的石头完成签到,获得积分10
1秒前
小吴同学发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
腼腆的若雁完成签到,获得积分10
5秒前
5秒前
fuiee发布了新的文献求助10
5秒前
小开心完成签到,获得积分10
5秒前
北极星完成签到,获得积分10
6秒前
cccc完成签到 ,获得积分10
6秒前
7秒前
Dogged完成签到 ,获得积分10
8秒前
耶啵耶啵完成签到 ,获得积分10
9秒前
mentality完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
VDC应助机智寻雪采纳,获得30
10秒前
10秒前
jack_kunn发布了新的文献求助30
11秒前
12秒前
12秒前
田様应助linkman采纳,获得10
12秒前
zik完成签到 ,获得积分10
13秒前
汉堡包应助纷飞漫天寂寥采纳,获得10
13秒前
开心完成签到 ,获得积分10
14秒前
shuyi发布了新的文献求助10
15秒前
16秒前
enen发布了新的文献求助10
16秒前
16秒前
17秒前
欣怡高发布了新的文献求助10
17秒前
余繁发布了新的文献求助10
20秒前
阿巴巴巴吧完成签到,获得积分10
20秒前
ahh完成签到 ,获得积分10
20秒前
20秒前
无极微光应助Redback采纳,获得20
20秒前
llsknd发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714