已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cas-VSwin transformer: A variant swin transformer for surface-defect detection

变压器 计算机科学 工程类 电气工程 电压
作者
Linfeng Gao,Jianxun Zhang,Changhui Yang,Yuechuan Zhou
出处
期刊:Computers in Industry [Elsevier]
卷期号:140: 103689-103689 被引量:126
标识
DOI:10.1016/j.compind.2022.103689
摘要

Surface defect detection using deep learning approaches has become a promising area of research, but the difficulty of accurately locating and segmenting various forms of defects presents a challenge for this method. Swin Transformer, as a Transformer-based model, has made significant progress in computer vision. Its performance surpasses standard CNN’s performance on most tasks, but it has drawn scant attention from industrial applications. Thus far, using CNNs for surface defect detection tends to be the most common application. To explore the extensibility of the Transformer, we seek to expand the applicability of the Swin Transformer and apply it to our task. This paper proposes an improved structure called the Variant Swin Transformer. We designed a new window shift scheme that further strengthens the feature transfer between windows and makes the framework more capable of serving as a backbone for defect detection. The overall framework named the Cas-VSwin Transformer outperformed most existing models on the private dataset we built (82.3 box AP and 80.2 mask AP). We also further verified the superiority of transfer learning in training small-scale datasets. Moreover, the proposed VSwin Transformer has a lower relative error in the quantitative analysis of the defect areas, demonstrating that the Cas-VSwin Transformer is an effective model for surface defect detection, and it has great potential for other similar industrial applications. • Instance segmentation of the deep model for surface-defect detection. • Use improved Vision Transformer for industrial applications. • Annotated more than 4000 images of metal surface defects. • The proposed model outperforms most existing models on surface-defect detection. • Fine-tune the model based on transfer learning to improve accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
我是老大应助natus采纳,获得10
5秒前
尊敬谷波发布了新的文献求助10
6秒前
veniming发布了新的文献求助30
7秒前
paul完成签到,获得积分10
10秒前
ywhywh50完成签到,获得积分10
13秒前
balelalala完成签到,获得积分20
13秒前
13秒前
好事发生发布了新的文献求助30
15秒前
671发布了新的文献求助10
18秒前
18秒前
可爱的函函应助科研小白i采纳,获得10
20秒前
21秒前
聪慧鸭子发布了新的文献求助10
23秒前
小熊发布了新的文献求助10
26秒前
尊敬谷波完成签到,获得积分10
26秒前
orixero应助Sikii采纳,获得10
27秒前
领导范儿应助徐笑松采纳,获得10
27秒前
完美世界应助高源伯采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
30秒前
小马甲应助科研通管家采纳,获得10
30秒前
obaica完成签到,获得积分10
33秒前
华仔应助漂亮的不言采纳,获得10
34秒前
古德曼发布了新的文献求助100
36秒前
张言完成签到,获得积分10
37秒前
无私幻枫完成签到,获得积分10
38秒前
39秒前
39秒前
41秒前
帅气书白发布了新的文献求助10
44秒前
乐游刘完成签到 ,获得积分10
44秒前
44秒前
luxia完成签到 ,获得积分10
45秒前
玻璃杯发布了新的文献求助10
46秒前
光亮海云发布了新的文献求助10
46秒前
情怀应助积极羽毛采纳,获得10
47秒前
49秒前
每天至少八杯水完成签到 ,获得积分10
50秒前
思源应助671采纳,获得10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875005
求助须知:如何正确求助?哪些是违规求助? 6512747
关于积分的说明 15675773
捐赠科研通 4992774
什么是DOI,文献DOI怎么找? 2691255
邀请新用户注册赠送积分活动 1633602
关于科研通互助平台的介绍 1591217