Multi-Label Classification in Patient-Doctor Dialogues With the RoBERTa-WWM-ext + CNN (Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach With Whole Word Masking Extended Combining a Convolutional Neural Network) Model: Named Entity Study

计算机科学 编码器 判决 变压器 自然语言处理 人工智能 卷积神经网络 聊天机器人 F1得分 量子力学 操作系统 物理 电压
作者
Yuanyuan Sun,Dongping Gao,Xifeng Shen,Meiting Li,Jiale Nan,Weining Zhang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:10 (4): e35606-e35606 被引量:5
标识
DOI:10.2196/35606
摘要

With the prevalence of online consultation, many patient-doctor dialogues have accumulated, which, in an authentic language environment, are of significant value to the research and development of intelligent question answering and automated triage in recent natural language processing studies.The purpose of this study was to design a front-end task module for the network inquiry of intelligent medical services. Through the study of automatic labeling of real doctor-patient dialogue text on the internet, a method of identifying the negative and positive entities of dialogues with higher accuracy has been explored.The data set used for this study was from the Spring Rain Doctor internet online consultation, which was downloaded from the official data set of Alibaba Tianchi Lab. We proposed a composite abutting joint model, which was able to automatically classify the types of clinical finding entities into the following 4 attributes: positive, negative, other, and empty. We adapted a downstream architecture in Chinese Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach (RoBERTa) with whole word masking (WWM) extended (RoBERTa-WWM-ext) combining a text convolutional neural network (CNN). We used RoBERTa-WWM-ext to express sentence semantics as a text vector and then extracted the local features of the sentence through the CNN, which was our new fusion model. To verify its knowledge learning ability, we chose Enhanced Representation through Knowledge Integration (ERNIE), original Bidirectional Encoder Representations from Transformers (BERT), and Chinese BERT with WWM to perform the same task, and then compared the results. Precision, recall, and macro-F1 were used to evaluate the performance of the methods.We found that the ERNIE model, which was trained with a large Chinese corpus, had a total score (macro-F1) of 65.78290014, while BERT and BERT-WWM had scores of 53.18247117 and 69.2795315, respectively. Our composite abutting joint model (RoBERTa-WWM-ext + CNN) had a macro-F1 value of 70.55936311, showing that our model outperformed the other models in the task.The accuracy of the original model can be greatly improved by giving priority to WWM and replacing the word-based mask with unit to classify and label medical entities. Better results can be obtained by effectively optimizing the downstream tasks of the model and the integration of multiple models later on. The study findings contribute to the translation of online consultation information into machine-readable information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dragonborn完成签到 ,获得积分10
刚刚
LL发布了新的文献求助10
刚刚
优秀的dd完成签到 ,获得积分10
刚刚
咖啡豆完成签到,获得积分0
1秒前
斯文败类应助威武的玉米采纳,获得10
1秒前
1秒前
2秒前
2秒前
自觉的香菱完成签到,获得积分10
2秒前
3秒前
伴你笑发布了新的文献求助10
3秒前
4秒前
lululala发布了新的文献求助10
4秒前
JamesPei应助海滨之鹅采纳,获得10
4秒前
Iuu发布了新的文献求助10
5秒前
科研通AI2S应助清爽的藏今采纳,获得10
5秒前
尹晓敏完成签到,获得积分10
5秒前
ding应助清新的发带采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
墨秘一完成签到,获得积分10
8秒前
精明的迎松应助言言采纳,获得10
8秒前
ding应助若有人兮采纳,获得10
8秒前
威武的玉米完成签到,获得积分10
9秒前
9秒前
9秒前
鹏鹏完成签到,获得积分10
9秒前
LL完成签到,获得积分10
10秒前
顾矜应助lululala采纳,获得10
11秒前
Iuu完成签到,获得积分10
11秒前
高发发布了新的文献求助10
12秒前
WEN发布了新的文献求助10
13秒前
万能图书馆应助lll采纳,获得10
13秒前
x先生完成签到,获得积分10
13秒前
13秒前
双天完成签到,获得积分10
14秒前
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3226600
求助须知:如何正确求助?哪些是违规求助? 2874946
关于积分的说明 8188627
捐赠科研通 2541933
什么是DOI,文献DOI怎么找? 1372477
科研通“疑难数据库(出版商)”最低求助积分说明 646489
邀请新用户注册赠送积分活动 620853