Multi-Label Classification in Patient-Doctor Dialogues With the RoBERTa-WWM-ext + CNN (Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach With Whole Word Masking Extended Combining a Convolutional Neural Network) Model: Named Entity Study

计算机科学 编码器 判决 变压器 自然语言处理 人工智能 卷积神经网络 聊天机器人 F1得分 物理 量子力学 电压 操作系统
作者
Yuanyuan Sun,Dongping Gao,Xifeng Shen,Meiting Li,Jiale Nan,Weining Zhang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:10 (4): e35606-e35606 被引量:5
标识
DOI:10.2196/35606
摘要

With the prevalence of online consultation, many patient-doctor dialogues have accumulated, which, in an authentic language environment, are of significant value to the research and development of intelligent question answering and automated triage in recent natural language processing studies.The purpose of this study was to design a front-end task module for the network inquiry of intelligent medical services. Through the study of automatic labeling of real doctor-patient dialogue text on the internet, a method of identifying the negative and positive entities of dialogues with higher accuracy has been explored.The data set used for this study was from the Spring Rain Doctor internet online consultation, which was downloaded from the official data set of Alibaba Tianchi Lab. We proposed a composite abutting joint model, which was able to automatically classify the types of clinical finding entities into the following 4 attributes: positive, negative, other, and empty. We adapted a downstream architecture in Chinese Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach (RoBERTa) with whole word masking (WWM) extended (RoBERTa-WWM-ext) combining a text convolutional neural network (CNN). We used RoBERTa-WWM-ext to express sentence semantics as a text vector and then extracted the local features of the sentence through the CNN, which was our new fusion model. To verify its knowledge learning ability, we chose Enhanced Representation through Knowledge Integration (ERNIE), original Bidirectional Encoder Representations from Transformers (BERT), and Chinese BERT with WWM to perform the same task, and then compared the results. Precision, recall, and macro-F1 were used to evaluate the performance of the methods.We found that the ERNIE model, which was trained with a large Chinese corpus, had a total score (macro-F1) of 65.78290014, while BERT and BERT-WWM had scores of 53.18247117 and 69.2795315, respectively. Our composite abutting joint model (RoBERTa-WWM-ext + CNN) had a macro-F1 value of 70.55936311, showing that our model outperformed the other models in the task.The accuracy of the original model can be greatly improved by giving priority to WWM and replacing the word-based mask with unit to classify and label medical entities. Better results can be obtained by effectively optimizing the downstream tasks of the model and the integration of multiple models later on. The study findings contribute to the translation of online consultation information into machine-readable information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴天完成签到,获得积分10
刚刚
1秒前
fyjlfy完成签到 ,获得积分10
1秒前
1秒前
hux完成签到,获得积分10
1秒前
1秒前
1秒前
Harden完成签到,获得积分10
1秒前
阿翔完成签到,获得积分10
1秒前
郭敬一完成签到,获得积分10
1秒前
昔颜完成签到,获得积分10
2秒前
mang发布了新的文献求助10
2秒前
受伤幻桃发布了新的文献求助10
2秒前
3秒前
3秒前
candy完成签到,获得积分10
3秒前
3秒前
眯眯眼的板栗完成签到,获得积分10
3秒前
奋斗灵珊发布了新的文献求助10
3秒前
全或无完成签到,获得积分10
4秒前
万能图书馆应助aaaaa采纳,获得10
4秒前
4秒前
Willwzh完成签到,获得积分10
4秒前
STDRM完成签到,获得积分10
4秒前
缺月挂疏桐完成签到,获得积分10
4秒前
iro完成签到 ,获得积分10
5秒前
牧云发布了新的文献求助10
5秒前
普鲁卡因发布了新的文献求助10
5秒前
懵懂的随阴完成签到,获得积分10
5秒前
桐桐应助唧唧采纳,获得10
5秒前
海的呼唤发布了新的文献求助10
6秒前
6秒前
张诗雨完成签到,获得积分10
6秒前
无限的依凝完成签到,获得积分10
6秒前
一名不知死活的研究生完成签到,获得积分10
6秒前
小林完成签到,获得积分10
6秒前
KEYANXIAOBAI发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997