已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Label Classification in Patient-Doctor Dialogues With the RoBERTa-WWM-ext + CNN (Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach With Whole Word Masking Extended Combining a Convolutional Neural Network) Model: Named Entity Study

计算机科学 编码器 判决 变压器 自然语言处理 人工智能 卷积神经网络 聊天机器人 F1得分 物理 量子力学 电压 操作系统
作者
Yuanyuan Sun,Dongping Gao,Xifeng Shen,Meiting Li,Jiale Nan,Weining Zhang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:10 (4): e35606-e35606 被引量:5
标识
DOI:10.2196/35606
摘要

With the prevalence of online consultation, many patient-doctor dialogues have accumulated, which, in an authentic language environment, are of significant value to the research and development of intelligent question answering and automated triage in recent natural language processing studies.The purpose of this study was to design a front-end task module for the network inquiry of intelligent medical services. Through the study of automatic labeling of real doctor-patient dialogue text on the internet, a method of identifying the negative and positive entities of dialogues with higher accuracy has been explored.The data set used for this study was from the Spring Rain Doctor internet online consultation, which was downloaded from the official data set of Alibaba Tianchi Lab. We proposed a composite abutting joint model, which was able to automatically classify the types of clinical finding entities into the following 4 attributes: positive, negative, other, and empty. We adapted a downstream architecture in Chinese Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach (RoBERTa) with whole word masking (WWM) extended (RoBERTa-WWM-ext) combining a text convolutional neural network (CNN). We used RoBERTa-WWM-ext to express sentence semantics as a text vector and then extracted the local features of the sentence through the CNN, which was our new fusion model. To verify its knowledge learning ability, we chose Enhanced Representation through Knowledge Integration (ERNIE), original Bidirectional Encoder Representations from Transformers (BERT), and Chinese BERT with WWM to perform the same task, and then compared the results. Precision, recall, and macro-F1 were used to evaluate the performance of the methods.We found that the ERNIE model, which was trained with a large Chinese corpus, had a total score (macro-F1) of 65.78290014, while BERT and BERT-WWM had scores of 53.18247117 and 69.2795315, respectively. Our composite abutting joint model (RoBERTa-WWM-ext + CNN) had a macro-F1 value of 70.55936311, showing that our model outperformed the other models in the task.The accuracy of the original model can be greatly improved by giving priority to WWM and replacing the word-based mask with unit to classify and label medical entities. Better results can be obtained by effectively optimizing the downstream tasks of the model and the integration of multiple models later on. The study findings contribute to the translation of online consultation information into machine-readable information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
阿信必发JACS完成签到,获得积分10
1秒前
1秒前
斯文败类应助w1x2123采纳,获得10
2秒前
2秒前
852应助王涛采纳,获得10
3秒前
ph发布了新的文献求助10
3秒前
haodian完成签到 ,获得积分10
3秒前
沿途有你完成签到 ,获得积分10
4秒前
暗觉完成签到 ,获得积分10
5秒前
will完成签到 ,获得积分10
5秒前
派大星完成签到 ,获得积分10
5秒前
提子发布了新的文献求助10
6秒前
长情的涔完成签到 ,获得积分10
6秒前
苹果丹云完成签到,获得积分10
6秒前
7秒前
淡淡元蝶完成签到 ,获得积分10
7秒前
7秒前
隐形曼青应助出其东门采纳,获得10
8秒前
10秒前
ph完成签到,获得积分10
10秒前
科研通AI6应助知性的雅彤采纳,获得10
10秒前
oleskarabach完成签到,获得积分20
12秒前
Hello应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得30
12秒前
浮游应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
12秒前
wcy完成签到 ,获得积分10
12秒前
陆碌路完成签到,获得积分10
13秒前
顺利的飞槐完成签到 ,获得积分10
14秒前
风趣冷之发布了新的文献求助50
14秒前
就看最后一篇完成签到 ,获得积分0
15秒前
王涛发布了新的文献求助10
15秒前
15秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502327
求助须知:如何正确求助?哪些是违规求助? 4598289
关于积分的说明 14463432
捐赠科研通 4531834
什么是DOI,文献DOI怎么找? 2483661
邀请新用户注册赠送积分活动 1466923
关于科研通互助平台的介绍 1439539

今日热心研友

浮游
80
大龙哥886
40
GingerF
2
可爱的函函
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10