Multi-Label Classification in Patient-Doctor Dialogues With the RoBERTa-WWM-ext + CNN (Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach With Whole Word Masking Extended Combining a Convolutional Neural Network) Model: Named Entity Study

计算机科学 编码器 判决 变压器 自然语言处理 人工智能 卷积神经网络 聊天机器人 F1得分 物理 量子力学 电压 操作系统
作者
Yuanyuan Sun,Dongping Gao,Xifeng Shen,Meiting Li,Jiale Nan,Weining Zhang
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:10 (4): e35606-e35606 被引量:5
标识
DOI:10.2196/35606
摘要

With the prevalence of online consultation, many patient-doctor dialogues have accumulated, which, in an authentic language environment, are of significant value to the research and development of intelligent question answering and automated triage in recent natural language processing studies.The purpose of this study was to design a front-end task module for the network inquiry of intelligent medical services. Through the study of automatic labeling of real doctor-patient dialogue text on the internet, a method of identifying the negative and positive entities of dialogues with higher accuracy has been explored.The data set used for this study was from the Spring Rain Doctor internet online consultation, which was downloaded from the official data set of Alibaba Tianchi Lab. We proposed a composite abutting joint model, which was able to automatically classify the types of clinical finding entities into the following 4 attributes: positive, negative, other, and empty. We adapted a downstream architecture in Chinese Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach (RoBERTa) with whole word masking (WWM) extended (RoBERTa-WWM-ext) combining a text convolutional neural network (CNN). We used RoBERTa-WWM-ext to express sentence semantics as a text vector and then extracted the local features of the sentence through the CNN, which was our new fusion model. To verify its knowledge learning ability, we chose Enhanced Representation through Knowledge Integration (ERNIE), original Bidirectional Encoder Representations from Transformers (BERT), and Chinese BERT with WWM to perform the same task, and then compared the results. Precision, recall, and macro-F1 were used to evaluate the performance of the methods.We found that the ERNIE model, which was trained with a large Chinese corpus, had a total score (macro-F1) of 65.78290014, while BERT and BERT-WWM had scores of 53.18247117 and 69.2795315, respectively. Our composite abutting joint model (RoBERTa-WWM-ext + CNN) had a macro-F1 value of 70.55936311, showing that our model outperformed the other models in the task.The accuracy of the original model can be greatly improved by giving priority to WWM and replacing the word-based mask with unit to classify and label medical entities. Better results can be obtained by effectively optimizing the downstream tasks of the model and the integration of multiple models later on. The study findings contribute to the translation of online consultation information into machine-readable information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
4秒前
Hayat发布了新的文献求助10
4秒前
柔之发布了新的文献求助10
5秒前
6秒前
6秒前
李健应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
顺利紫山发布了新的文献求助10
6秒前
上官若男应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
wss发布了新的文献求助10
8秒前
8秒前
9秒前
施含莲发布了新的文献求助10
9秒前
12秒前
13秒前
共享精神应助hua采纳,获得10
13秒前
wss完成签到,获得积分20
14秒前
充电宝应助阳光向秋采纳,获得10
14秒前
15秒前
Akim应助云宝采纳,获得10
17秒前
捉不到猫的蠢鱼完成签到,获得积分20
18秒前
wbh发布了新的文献求助10
19秒前
落后寒凡发布了新的文献求助30
21秒前
文明8发布了新的文献求助10
21秒前
22秒前
Owen应助djx123采纳,获得10
22秒前
Vi关闭了Vi文献求助
23秒前
23秒前
汉堡包应助兴奋采梦采纳,获得10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901