Multi-Label Classification in Patient-Doctor Dialogues With the RoBERTa-WWM-ext + CNN (Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach With Whole Word Masking Extended Combining a Convolutional Neural Network) Model: Named Entity Study

计算机科学 编码器 判决 变压器 自然语言处理 人工智能 卷积神经网络 聊天机器人 F1得分 物理 量子力学 电压 操作系统
作者
Yuanyuan Sun,Dongping Gao,Xifeng Shen,Meiting Li,Jiale Nan,Weining Zhang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:10 (4): e35606-e35606 被引量:5
标识
DOI:10.2196/35606
摘要

With the prevalence of online consultation, many patient-doctor dialogues have accumulated, which, in an authentic language environment, are of significant value to the research and development of intelligent question answering and automated triage in recent natural language processing studies.The purpose of this study was to design a front-end task module for the network inquiry of intelligent medical services. Through the study of automatic labeling of real doctor-patient dialogue text on the internet, a method of identifying the negative and positive entities of dialogues with higher accuracy has been explored.The data set used for this study was from the Spring Rain Doctor internet online consultation, which was downloaded from the official data set of Alibaba Tianchi Lab. We proposed a composite abutting joint model, which was able to automatically classify the types of clinical finding entities into the following 4 attributes: positive, negative, other, and empty. We adapted a downstream architecture in Chinese Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach (RoBERTa) with whole word masking (WWM) extended (RoBERTa-WWM-ext) combining a text convolutional neural network (CNN). We used RoBERTa-WWM-ext to express sentence semantics as a text vector and then extracted the local features of the sentence through the CNN, which was our new fusion model. To verify its knowledge learning ability, we chose Enhanced Representation through Knowledge Integration (ERNIE), original Bidirectional Encoder Representations from Transformers (BERT), and Chinese BERT with WWM to perform the same task, and then compared the results. Precision, recall, and macro-F1 were used to evaluate the performance of the methods.We found that the ERNIE model, which was trained with a large Chinese corpus, had a total score (macro-F1) of 65.78290014, while BERT and BERT-WWM had scores of 53.18247117 and 69.2795315, respectively. Our composite abutting joint model (RoBERTa-WWM-ext + CNN) had a macro-F1 value of 70.55936311, showing that our model outperformed the other models in the task.The accuracy of the original model can be greatly improved by giving priority to WWM and replacing the word-based mask with unit to classify and label medical entities. Better results can be obtained by effectively optimizing the downstream tasks of the model and the integration of multiple models later on. The study findings contribute to the translation of online consultation information into machine-readable information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
连夜雪完成签到,获得积分10
刚刚
小蘑菇应助smjjs采纳,获得20
刚刚
天天快乐应助困困小馒头采纳,获得10
刚刚
俭朴尔白发布了新的文献求助30
刚刚
licheng完成签到,获得积分10
刚刚
Owen应助疯狂的洋葱采纳,获得30
1秒前
王通发布了新的文献求助10
1秒前
1秒前
静_静完成签到 ,获得积分10
1秒前
1秒前
二哈发布了新的文献求助10
2秒前
Mikecheng完成签到,获得积分10
2秒前
2秒前
隐形曼青应助巴旦木采纳,获得10
3秒前
3秒前
Silvia完成签到,获得积分10
3秒前
bkagyin应助迅速路人采纳,获得10
3秒前
科目三应助寒塘渡鹤影采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
Kaede发布了新的文献求助10
4秒前
4秒前
李卓完成签到,获得积分10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
桐桐应助热心的大船采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
早睡早起完成签到 ,获得积分10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
魏士博完成签到,获得积分10
5秒前
高高绮玉应助科研通管家采纳,获得10
5秒前
5秒前
852应助王达采纳,获得10
5秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444