Privacy-Preserving Cross-Environment Human Activity Recognition

计算机科学 原始数据 模式 不变(物理) 信道状态信息 人工智能 机器学习 信息敏感性 数据挖掘 人机交互 计算机安全 无线 电信 物理 数学物理 社会学 程序设计语言 社会科学
作者
Le Zhang,Wei Cui,Bing Li,Zhenghua Chen,Min Wu,Teo Sin Gee
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (3): 1765-1775 被引量:9
标识
DOI:10.1109/tcyb.2021.3126831
摘要

Recent studies have demonstrated the success of using the channel state information (CSI) from the WiFi signal to analyze human activities in a fixed and well-controlled environment. Those systems usually degrade when being deployed in new environments. A straightforward solution to solve this limitation is to collect and annotate data samples from different environments with advanced learning strategies. Although workable as reported, those methods are often privacy sensitive because the training algorithms need to access the data from different environments, which may be owned by different organizations. We present a practical method for the WiFi-based privacy-preserving cross-environment human activity recognition (HAR). It collects and shares information from different environments, while maintaining the privacy of individual person being involved. At the core of our approach is the utilization of the Johnson-Lindenstrauss transform, which is theoretically shown to be differentially private. Based on that, we further design an adversarial learning strategy to generate environment-invariant representations for HAR. We demonstrate the effectiveness of the proposed method with different data modalities from two real-life environments. More specifically, on the raw CSI dataset, it shows 2.18% and 1.24% improvements over challenging baselines for two environments, respectively. Moreover, with the discrete wavelet transform features, it further yields 5.71% and 1.55% improvements, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷毛狗发布了新的文献求助10
刚刚
云宇发布了新的文献求助10
刚刚
云宇发布了新的文献求助10
刚刚
刚刚
云宇发布了新的文献求助10
1秒前
逻辑猫发布了新的文献求助20
1秒前
酷波er应助是哇哦采纳,获得10
1秒前
无辜的皮皮虾完成签到,获得积分10
3秒前
多发一区完成签到,获得积分10
3秒前
今后应助Ray采纳,获得30
3秒前
大胆夜山发布了新的文献求助10
3秒前
麦橙发布了新的文献求助10
3秒前
5秒前
苹果发布了新的文献求助10
5秒前
7秒前
8秒前
Ephemeral发布了新的文献求助10
9秒前
逻辑猫完成签到,获得积分10
10秒前
gomm发布了新的文献求助10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得30
11秒前
ding应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
ZXB应助科研通管家采纳,获得20
11秒前
ZXB应助科研通管家采纳,获得20
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
11秒前
朱文韬发布了新的文献求助10
12秒前
Laila完成签到,获得积分10
14秒前
15秒前
16秒前
sparrow完成签到,获得积分10
16秒前
17秒前
17秒前
oyy发布了新的文献求助10
18秒前
18秒前
汉堡包应助lyy!!!采纳,获得10
18秒前
18秒前
焦糖布丁的滋味完成签到,获得积分10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745812
求助须知:如何正确求助?哪些是违规求助? 3288765
关于积分的说明 10060476
捐赠科研通 3004943
什么是DOI,文献DOI怎么找? 1650009
邀请新用户注册赠送积分活动 785662
科研通“疑难数据库(出版商)”最低求助积分说明 751204