亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Higher Order Connection Enhanced Community Detection in Adversarial Multiview Networks

对抗制 计算机科学 模块化(生物学) 连接(主束) 集团 群落结构 人工智能 订单(交换) 数据挖掘 数学 几何学 财务 遗传学 生物 组合数学 经济
作者
Ling Huang,Chang‐Dong Wang,Philip S. Yu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (5): 3060-3074 被引量:14
标识
DOI:10.1109/tcyb.2021.3125227
摘要

Community detection in multiview networks has drawn an increasing amount of attention in recent years. Many approaches have been developed from different perspectives. Despite the success, the problem of community detection in adversarial multiview networks remains largely unsolved. An adversarial multiview network is a multiview network that suffers an adversarial attack on community detection in which the attackers may deliberately remove some critical edges so as to hide the underlying community structure, leading to the performance degeneration of the existing approaches. To address this problem, we propose a novel approach, called higher order connection enhanced multiview modularity (HCEMM). The main idea lies in enhancing the intracommunity connection of each view by means of utilizing the higher order connection structure. The first step is to discover the view-specific higher order Microcommunities (VHM-communities) from the higher order connection structure. Then, for each view of the original multiview network, additional edges are added to make the nodes in each of its VHM-communities fully connected like a clique, by which the intracommunity connection of the multiview network can be enhanced. Therefore, the proposed approach is able to discover the underlying community structure in a multiview network while recovering the missing edges. Extensive experiments conducted on 16 real-world datasets confirm the effectiveness of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
32秒前
科目三应助科研通管家采纳,获得10
33秒前
郭楠楠发布了新的文献求助30
37秒前
39秒前
Xyyy完成签到,获得积分10
41秒前
RED发布了新的文献求助10
44秒前
满天星发布了新的文献求助10
1分钟前
1分钟前
郭楠楠发布了新的文献求助10
1分钟前
缨绒完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
满天星完成签到 ,获得积分10
2分钟前
zqr发布了新的文献求助10
2分钟前
Hello应助Raunio采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
abdo完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分0
3分钟前
小蘑菇应助成太采纳,获得10
3分钟前
万能图书馆应助zxl采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
郭楠楠发布了新的文献求助10
3分钟前
3分钟前
清泉发布了新的文献求助10
3分钟前
3分钟前
成太发布了新的文献求助10
3分钟前
zxl发布了新的文献求助10
3分钟前
CodeCraft应助郭楠楠采纳,获得10
3分钟前
4分钟前
郭楠楠发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
付辛博boo完成签到,获得积分10
4分钟前
付辛博boo发布了新的文献求助30
4分钟前
李健应助SiboN采纳,获得10
4分钟前
万能图书馆应助Goal采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664438
求助须知:如何正确求助?哪些是违规求助? 4861169
关于积分的说明 15107642
捐赠科研通 4822995
什么是DOI,文献DOI怎么找? 2581824
邀请新用户注册赠送积分活动 1536001
关于科研通互助平台的介绍 1494359