A Novel Deep Learning Framework for Automatic Recognition of Thyroid Gland and Tissues of Neck in Ultrasound Image

计算机科学 人工智能 背景(考古学) 深度学习 特征提取 甲状腺 棱锥(几何) 分割 图像分割 特征(语言学) 模式识别(心理学) 计算机视觉 医学 哲学 古生物学 内科学 语言学 物理 光学 生物
作者
Laifa Ma,Guanghua Tan,Hongxia Luo,Qing Liao,Shengli Li,Kenli Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (9): 6113-6124 被引量:19
标识
DOI:10.1109/tcsvt.2022.3157828
摘要

Recognition of thyroid glands and tissues of the neck is vital for screening related diseases in ultrasound videos. This task is subjective, challenging, and dependent on the experience of sonographer in current clinical practice. The purpose is to develop a fully automated thyroid gland and tissues of neck recognition framework to assist doctors in distinguishing the boundaries of different tissues. In this paper, we propose a novel deep learning framework that consists of a feature extraction network, region proposal network, object detection head, and spatial pyramid RoIAlign-based segmentation head. Designed spatial pyramid RoIAlign can efficiently capture local and global context features, and aggregates the multiple context information that makes the result much more reliable. A large dataset is constructed to train the proposed method. The performance is evaluated using the COCO metrics. The experimental results demonstrate that the proposed deep learning method can effectively realize the automatic recognition of the thyroid gland and tissues of neck in ultrasound videos. Considering the clinical practical application scenarios, we developed an automatic recognition system of thyroid and neck tissue based on edge computing, which can expediently assist doctors in distinguishing the boundaries between different tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
三三椋椋发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
华仔应助蛋挞采纳,获得10
4秒前
科目三应助shadow采纳,获得10
4秒前
5秒前
浮游应助Prometheus采纳,获得10
5秒前
自然醒关注了科研通微信公众号
7秒前
申以柔发布了新的文献求助10
8秒前
8秒前
甜蜜花发布了新的文献求助10
9秒前
烟花应助zq采纳,获得10
10秒前
SciGPT应助科研小小萌新采纳,获得10
10秒前
加菲丰丰举报求助违规成功
10秒前
小布举报求助违规成功
10秒前
哈基米德举报求助违规成功
10秒前
10秒前
刘雨森完成签到 ,获得积分10
11秒前
小蘑菇应助Fun采纳,获得10
12秒前
14秒前
14秒前
15秒前
15秒前
15秒前
LeslieHu完成签到,获得积分10
16秒前
琪凯定理发布了新的文献求助10
16秒前
科研通AI5应助星空之下ssr采纳,获得10
16秒前
背背佳永远happy完成签到 ,获得积分10
17秒前
19秒前
所所应助小海豚采纳,获得10
19秒前
19秒前
加菲丰丰举报求助违规成功
19秒前
kingwill举报求助违规成功
19秒前
哈基米德举报求助违规成功
19秒前
19秒前
顾矜应助childdead采纳,获得10
20秒前
圣诞节完成签到,获得积分10
20秒前
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207116
求助须知:如何正确求助?哪些是违规求助? 4385218
关于积分的说明 13656031
捐赠科研通 4243728
什么是DOI,文献DOI怎么找? 2328256
邀请新用户注册赠送积分活动 1326009
关于科研通互助平台的介绍 1278185