过电位
纳米团簇
析氧
无定形固体
氢氧化物
催化作用
材料科学
电催化剂
塔菲尔方程
无机化学
氧气
化学工程
化学
纳米技术
物理化学
结晶学
电极
有机化学
电化学
工程类
作者
Youhai Cao,Yang Su,Liangliang Xu,Xiaohua Yang,Zhongkang Han,Rui Cao,Gao Li
标识
DOI:10.1016/j.jechem.2022.03.044
摘要
In this work, a one-pot strategy is presented to directly synthesize amorphous FexNiy hydroxide nanoclusters (denoted as ANC-FexNiy, <2 nm) with oxygen vacancies induced by ionic liquids. The ANC-FexNiy catalyst presents abundant catalytic sites and high intrinsic conductivity. As such, the optimized ANC-Fe1Ni2 exhibits high activity in oxygen evolution reaction (OER) with a Tafel slope of 39 mV dec–1 and an overpotential of 266 mV at 10 mA cm−2. Notably, the optimized ANC-Fe1Ni2 shows an extraordinarily large mass activity of 3028 A gFeNi–1 at the overpotential of 300 mV, which is ∼24-fold of commercial RuO2 catalyst. The superior activity of these FexNiy hydroxide nanoclusters is ascribed to (i) the amorphous and distorted structure with abundant oxygen vacancies, and (ii) enhanced active site density by downsizing the ANC-FexNiy clusters. This strategy provides a novel route for enhancing OER electrocatalytic performance and highly encouraging for the future application of amorphous metal hydroxides in catalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI