Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes

化学 电极 溶解 纳米线 薄板电阻 离子键合 纳米技术 有机太阳能电池 能量转换效率 接触电阻 化学工程 光电子学 离子 材料科学 聚合物 图层(电子) 有机化学 物理化学 工程类
作者
Guang Sheng Zeng,Weijie Chen,Xiaobin Chen,Yin Hu,Yang Chen,Ben Zhang,Haiyang Chen,Weiwei Sun,Yunxiu Shen,Yaowen Li,Feng Yan,Yongfang Li
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (19): 8658-8668 被引量:152
标识
DOI:10.1021/jacs.2c01503
摘要

Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl- and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl- in the IL regulates the Ag+ concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag+ to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm2) and 15.82% (active area: 1.0 cm2). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助ccc采纳,获得10
刚刚
Jasper应助ccc采纳,获得10
刚刚
1秒前
bkagyin应助Troyl采纳,获得10
2秒前
3秒前
3秒前
5秒前
小雨发布了新的文献求助10
5秒前
5秒前
情怀应助瘦瘦采纳,获得10
5秒前
专注梦之发布了新的文献求助10
6秒前
7秒前
脑洞疼应助dd采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
tramp应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
7秒前
嘎嘎嘎嘎应助科研通管家采纳,获得20
7秒前
美好乐松应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
Zzzzz发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助无辜问枫采纳,获得10
9秒前
777完成签到,获得积分10
10秒前
汉堡包应助等待泥猴桃采纳,获得10
11秒前
思源应助迅速的月光采纳,获得10
11秒前
等风的人发布了新的文献求助10
11秒前
小蘑菇应助zh采纳,获得10
12秒前
233完成签到,获得积分10
16秒前
隐形曼青应助等风的人采纳,获得10
18秒前
善学以致用应助等风的人采纳,获得10
18秒前
专注梦之完成签到,获得积分10
18秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2997229
求助须知:如何正确求助?哪些是违规求助? 2657705
关于积分的说明 7193807
捐赠科研通 2293035
什么是DOI,文献DOI怎么找? 1215732
科研通“疑难数据库(出版商)”最低求助积分说明 593300
版权声明 592825