Supraventricular ectopic beats and ventricular ectopic beats detection based on improved U-net

卷积(计算机科学) 计算机科学 灵敏度(控制系统) 卷积神经网络 模式识别(心理学) 人工智能 特征(语言学) 深度学习 算法 人工神经网络 工程类 电子工程 语言学 哲学
作者
Lishen Qiu,Wenqiang Cai,Miao Zhang,Yanfang Dong,Wenliang Zhu,Lirong Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (7): 075003-075003 被引量:2
标识
DOI:10.1088/1361-6579/ac6aa2
摘要

Objective.Supraventricular ectopic beats (SVEB) or ventricular ectopic beats (VEB) are common arrhythmia with uncertain occurrence and morphological diversity, so realizing their automatic localization is of great significance in clinical diagnosis.Methods.We propose a modified U-net network: USV-net, it can simultaneously realize the automatic positioning of VEB and SVEB. The improvement consists of three parts: firstly, we reconstruct part of the convolutional layer in U-net using group convolution to reduce the expression of redundant features. Secondly, a plug-and-play multi-scale 2D deformable convolution module is designed to extract cross-channel features of different scales. Thirdly, in addition to conventional output of U-net, we also compress and output the bottom feature map of U-net, the dual-output is trained through Dice-loss to take into account the learning of high/low resolution features of the model. We used the MIT-BIH arrhythmia database for patient-specific training, and used Sensitivity, Positive prediction rate and F1-scores to evaluate the effectiveness of our method.Main Result.The F1-scores of SVEB and VEB achieve the best results compared with other studies in different testing records. It is worth noting that the F1-scores of SVEB and VEB reached 81.3 and 95.4 in the 24 testing records. Moreover, our method is also at the forefront in Sensitivity and Positive prediction rate.Significance.The method proposed in this paper has great potential in the detection of SVEB and VEB. We anticipate efficiency and accuracy of clinical detection of ectopic beats would be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好难啊发布了新的文献求助10
1秒前
1秒前
5秒前
6秒前
6秒前
wewe完成签到,获得积分20
7秒前
李大爷发布了新的文献求助10
7秒前
Kevin完成签到,获得积分10
9秒前
酷炫的尔丝完成签到 ,获得积分10
9秒前
Hello应助标致的蛋挞采纳,获得50
10秒前
大个应助明亮的宁采纳,获得10
11秒前
Rainbow发布了新的文献求助10
11秒前
anyone发布了新的文献求助30
12秒前
充电宝应助SY采纳,获得10
13秒前
D先生完成签到,获得积分20
13秒前
yxt完成签到,获得积分10
13秒前
momo发布了新的文献求助10
14秒前
16秒前
苏照杭应助长度2到采纳,获得10
16秒前
17秒前
次我完成签到,获得积分10
17秒前
qisili关注了科研通微信公众号
18秒前
Owen应助李大爷采纳,获得10
19秒前
20秒前
脑洞疼应助迅速冰岚采纳,获得10
22秒前
NexusExplorer应助whoops采纳,获得10
22秒前
sweetbearm应助通~采纳,获得10
22秒前
VDC应助欢呼冰岚采纳,获得30
22秒前
Grayball应助hhl采纳,获得10
22秒前
充电宝应助次我采纳,获得10
23秒前
sgjj33发布了新的文献求助10
24秒前
墨墨完成签到,获得积分10
25秒前
蒸馏水完成签到,获得积分10
25秒前
123完成签到,获得积分10
25秒前
李大爷完成签到,获得积分10
26秒前
SY发布了新的文献求助10
26秒前
journey完成签到 ,获得积分10
30秒前
kaw发布了新的文献求助10
30秒前
彭于晏应助hdd采纳,获得10
33秒前
感性的寄真完成签到 ,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851