Supraventricular ectopic beats and ventricular ectopic beats detection based on improved U-net

卷积(计算机科学) 计算机科学 灵敏度(控制系统) 卷积神经网络 模式识别(心理学) 人工智能 特征(语言学) 深度学习 算法 人工神经网络 工程类 电子工程 语言学 哲学
作者
Lishen Qiu,Wenqiang Cai,Miao Zhang,Yanfang Dong,Wenliang Zhu,Lirong Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (7): 075003-075003 被引量:2
标识
DOI:10.1088/1361-6579/ac6aa2
摘要

Objective.Supraventricular ectopic beats (SVEB) or ventricular ectopic beats (VEB) are common arrhythmia with uncertain occurrence and morphological diversity, so realizing their automatic localization is of great significance in clinical diagnosis.Methods.We propose a modified U-net network: USV-net, it can simultaneously realize the automatic positioning of VEB and SVEB. The improvement consists of three parts: firstly, we reconstruct part of the convolutional layer in U-net using group convolution to reduce the expression of redundant features. Secondly, a plug-and-play multi-scale 2D deformable convolution module is designed to extract cross-channel features of different scales. Thirdly, in addition to conventional output of U-net, we also compress and output the bottom feature map of U-net, the dual-output is trained through Dice-loss to take into account the learning of high/low resolution features of the model. We used the MIT-BIH arrhythmia database for patient-specific training, and used Sensitivity, Positive prediction rate and F1-scores to evaluate the effectiveness of our method.Main Result.The F1-scores of SVEB and VEB achieve the best results compared with other studies in different testing records. It is worth noting that the F1-scores of SVEB and VEB reached 81.3 and 95.4 in the 24 testing records. Moreover, our method is also at the forefront in Sensitivity and Positive prediction rate.Significance.The method proposed in this paper has great potential in the detection of SVEB and VEB. We anticipate efficiency and accuracy of clinical detection of ectopic beats would be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xkhxh完成签到 ,获得积分10
1秒前
张二拿完成签到,获得积分10
1秒前
1秒前
叶博完成签到,获得积分10
1秒前
chem完成签到,获得积分10
1秒前
1秒前
ph完成签到 ,获得积分10
1秒前
2秒前
针地很不戳完成签到,获得积分10
2秒前
2秒前
随意发布了新的文献求助10
2秒前
乐乐应助雪见采纳,获得10
3秒前
Jasper应助de采纳,获得10
3秒前
Zhlili发布了新的文献求助20
3秒前
魔幻缘郡完成签到,获得积分10
3秒前
典雅碧空应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
EdinLiv应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
FashionBoy应助遐蝶采纳,获得10
3秒前
105400155完成签到,获得积分10
3秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
EdinLiv应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
能干的鞅完成签到,获得积分20
5秒前
踏实十八发布了新的文献求助30
5秒前
cong1216完成签到,获得积分10
5秒前
你坤叔公完成签到,获得积分20
5秒前
5秒前
zhanghl完成签到,获得积分10
6秒前
lh发布了新的文献求助10
6秒前
送你一匹马完成签到,获得积分10
6秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926