清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Coarse-fine point cloud registration based on local point-pair features and the iterative closest point algorithm

点云 迭代最近点 计算机科学 人工智能 特征(语言学) 计算机视觉 图像配准 点(几何) 直方图 匹配(统计) 模式识别(心理学) 点集注册 算法 数学 图像(数学) 哲学 统计 语言学 几何学
作者
Xiaofeng Yue,Zeyuan Liu,Juan Zhu,Xiaoshuai Gao,Baojin Yang,Yunsheng Tian
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:52 (11): 12569-12583 被引量:23
标识
DOI:10.1007/s10489-022-03201-3
摘要

3D point cloud registration has a wide range of applications in object shape detection, robot navigation and 3D reconstruction. Aiming at the problems of the traditional ICP registration algorithm, such as slow convergence speed and high requirements for the initial point cloud position, this paper proposes a coarse-fine point cloud registration method based on a fast and robust local point-pair feature (LPPF) and the ICP algorithm. The LPPF feature descriptor is an improved descriptor for the local application of classic point-pair features and is a histogram descriptor formed by counting the feature information of the local point cloud neighborhood. This paper completes point cloud registration through keypoint extraction, LPPF feature description, feature matching, coarse registration and fine registration. To verify the effectiveness of this method, under the evaluation indices of L1, RMSE and MAE, we analyzed the experimental results from the three aspects of descriptors, coarse registration and coarse-fine registration. Under Gaussian noise conditions, LPPF compared to the second-ranked descriptor, the L1 scores of LPPF on the Stanford, Kinect and Princeton datasets increased by 12%, 12.4% and 9.1%, respectively. The coarse registration experiment is compared with 5 classic descriptors on 3 commonly used datasets. The LPPF feature descriptor has higher registration accuracy and less registration time. Finally, the coarse-fine registration experiment shows that our method can reduce the number of iterations of the ICP algorithm by 77% under optimal conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
lod完成签到,获得积分10
5秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
8秒前
紫熊发布了新的文献求助10
19秒前
Liufgui应助水天一色采纳,获得10
25秒前
fang完成签到,获得积分10
31秒前
35秒前
50秒前
xiaozou55完成签到 ,获得积分10
51秒前
紫熊发布了新的文献求助20
1分钟前
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
drhwang完成签到,获得积分10
1分钟前
1分钟前
小强完成签到 ,获得积分10
1分钟前
kangshuai完成签到,获得积分10
1分钟前
水天一色发布了新的文献求助10
1分钟前
1分钟前
Liufgui应助乏味采纳,获得10
1分钟前
2分钟前
bellapp完成签到 ,获得积分10
2分钟前
2分钟前
Liufgui应助Fern采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
DSUNNY完成签到 ,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
忘忧Aquarius完成签到,获得积分10
3分钟前
貔貅完成签到 ,获得积分10
3分钟前
南苏发布了新的文献求助10
3分钟前
3分钟前
WenJun完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015340
求助须知:如何正确求助?哪些是违规求助? 3555298
关于积分的说明 11317940
捐赠科研通 3288605
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983