SONNET: A Self-Guided Ordinal Regression Neural Network for Segmentation and Classification of Nuclei in Large-Scale Multi-Tissue Histology Images

分割 计算机科学 人工智能 模式识别(心理学) 像素 体素 人工神经网络 图像分割 回归 比例(比率) 序数回归 机器学习 数学 统计 量子力学 物理
作者
Tan Nhu Nhat Doan,Boram Song,Trinh Thi Le Vuong,Kyungeun Kim,Jin Tae Kwak
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (7): 3218-3228 被引量:37
标识
DOI:10.1109/jbhi.2022.3149936
摘要

Automated nuclei segmentation and classification are the keys to analyze and understand the cellular characteristics and functionality, supporting computer-aided digital pathology in disease diagnosis. However, the task still remains challenging due to the intrinsic variations in size, intensity, and morphology of different types of nuclei. Herein, we propose a self-guided ordinal regression neural network for simultaneous nuclear segmentation and classification that can exploit the intrinsic characteristics of nuclei and focus on highly uncertain areas during training. The proposed network formulates nuclei segmentation as an ordinal regression learning by introducing a distance decreasing discretization strategy, which stratifies nuclei in a way that inner regions forming a regular shape of nuclei are separated from outer regions forming an irregular shape. It also adopts a self-guided training strategy to adaptively adjust the weights associated with nuclear pixels, depending on the difficulty of the pixels that is assessed by the network itself. To evaluate the performance of the proposed network, we employ large-scale multi-tissue datasets with 276349 exhaustively annotated nuclei. We show that the proposed network achieves the state-of-the-art performance in both nuclei segmentation and classification in comparison to several methods that are recently developed for segmentation and/or classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李鑫明完成签到 ,获得积分10
刚刚
1秒前
形容发布了新的文献求助10
2秒前
sjm发布了新的文献求助10
2秒前
3秒前
Alive发布了新的文献求助10
4秒前
5秒前
Jasper应助任梓宁采纳,获得10
5秒前
5秒前
智慧者发布了新的文献求助10
6秒前
丰富晓露关注了科研通微信公众号
6秒前
桐桐应助Jarl采纳,获得10
6秒前
呵呵完成签到,获得积分10
7秒前
专注寻菱发布了新的文献求助10
7秒前
8秒前
形容完成签到,获得积分10
8秒前
千日粉发布了新的文献求助10
10秒前
原野小年发布了新的文献求助10
10秒前
在水一方应助carbon-dots采纳,获得10
10秒前
大飘发布了新的文献求助10
10秒前
10秒前
sjm完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
qiangdoudou发布了新的文献求助30
13秒前
Alive完成签到,获得积分10
13秒前
14秒前
wxz1998发布了新的文献求助50
15秒前
筱筱发布了新的文献求助10
15秒前
脑洞疼应助收入股采纳,获得10
15秒前
gyb发布了新的文献求助30
16秒前
汉堡包应助zcc采纳,获得10
16秒前
都是发布了新的文献求助10
16秒前
GO发布了新的文献求助10
17秒前
20秒前
李健的粉丝团团长应助XIE采纳,获得50
20秒前
科研通AI2S应助原野小年采纳,获得10
20秒前
coco完成签到,获得积分10
20秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139127
求助须知:如何正确求助?哪些是违规求助? 2790013
关于积分的说明 7793363
捐赠科研通 2446416
什么是DOI,文献DOI怎么找? 1301093
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102