内质网
化学
未折叠蛋白反应
细胞生物学
细胞质
生物物理学
转染
生物化学
生物
基因
作者
Man-Sha Wu,Ze‐Rui Zhou,Xiaoyuan Wang,Binbin Chen,Mahmoud Elsayed Hafez,Ji-Fen Shi,Da‐Wei Li,Ruo‐Can Qian
标识
DOI:10.1021/acs.analchem.1c04764
摘要
The endoplasmic reticulum (ER) is crucial for the regulation of multiple cellular processes, such as cellular responses to stress and protein synthesis, folding, and posttranslational modification. Nevertheless, monitoring ER physiological activity remains challenging due to the lack of powerful detection methods. Herein, we built a two-stage cascade recognition process to achieve dynamic visualization of ER stress in living cells based on a fluorescent carbon dot (CD) probe, which is synthesized by a facile one-pot hydrothermal method without additional modification. The fluorescent CD probe enables two-stage cascade ER recognition by first accumulating in the ER as the positively charged and lipophilic surface of the CD probe allows its fast crossing of multiple membrane barriers. Next, the CD probe can specifically anchor on the ER membrane via recognition between boronic acids and o-dihydroxy groups of mannose in the ER lumen. The two-stage cascade recognition process significantly increases the ER affinity of the CD probe, thus allowing the following evaluation of ER stress by tracking autophagy-induced mannose transfer from the ER to the cytoplasm. Thus, the boronic acid-functionalized cationic CD probe represents an attractive tool for targeted ER imaging and dynamic tracking of ER stress in living cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI