Identification of Ferroptosis-Related Genes in Alzheimer’s Disease Based on Bioinformatic Analysis

小桶 基因 生物 计算生物学 微阵列分析技术 微阵列 疾病 遗传学 转录组 基因表达 医学 病理
作者
Ying Wāng,Guohua Chen,Wei Shao
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:16 被引量:46
标识
DOI:10.3389/fnins.2022.823741
摘要

Introduction Alzheimer’s disease (AD) is the most prevalent cause of dementia, and emerging evidence suggests that ferroptosis is involved in the pathological process of AD. Materials and Methods Three microarray datasets (GSE122063, GSE37263, and GSE140829) about AD were collected from the GEO database. AD-related module genes were identified through a weighted gene co-expression network analysis (WGCNA). The ferroptosis-related genes were extracted from FerrDb. The apoptosis-related genes were downloaded from UniProt as a control to show the specificity of ferroptosis. The overlap was performed to obtain the module genes associated with ferroptosis and apoptosis. Then the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and the protein-protein interaction (PPI) were conducted. Cytoscape with CytoHubba was used to identify the hub genes, and the Logistic regression was performed to distinguish the AD patients from controls. Results 53 ferroptosis-related module genes were obtained. The GO analysis revealed that response to oxidative stress and starvation, and multicellular organismal homeostasis were the most highly enriched terms. The KEGG analysis showed that these overlapped genes were enriched not only in renal cell carcinoma pathways and central carbon metabolism in cancer, but also in autophagy-related pathways and ferroptosis. Ferroptosis-related hub genes in AD (JUN, SLC2A1, TFRC, ALB, and NFE2L2) were finally identified, which could distinguish AD patients from controls (P < 0.05). The area under the ROC curve (AUC) was 0.643. Apoptosis-related hub genes in AD (STAT1, MCL1, and BCL2L11) were also identified and also could distinguish AD patients from controls (P < 0.05). The AUC was 0.608, which was less than the former AUC value, suggesting that ferroptosis was more special than apoptosis in AD. Conclusion We identified five hub genes (JUN, SLC2A1, TFRC, ALB, and NFE2L2) that are closely associated with ferroptosis in AD and can differentiate AD patients from controls. Three hub genes of apoptosis-related genes in AD (STAT1, MCL1, and BCL2L11) were also identified as a control to show the specificity of ferroptosis. JUN, SLC2A1, TFRC, ALB, and NFE2L2 are thus potential ferroptosis-related biomarkers for disease diagnosis and therapeutic monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Awake完成签到 ,获得积分10
7秒前
MRJJJJ完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
zhuosht完成签到 ,获得积分10
16秒前
exquisite完成签到,获得积分10
23秒前
枯叶蝶完成签到 ,获得积分10
25秒前
Lina完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
31秒前
松柏完成签到 ,获得积分10
40秒前
Junex完成签到 ,获得积分10
40秒前
村上春树的摩的完成签到 ,获得积分10
44秒前
机智的孤兰完成签到 ,获得积分10
46秒前
煲煲煲仔饭完成签到 ,获得积分10
49秒前
cata完成签到,获得积分10
49秒前
奥丁不言语完成签到 ,获得积分10
54秒前
高高菠萝完成签到 ,获得积分10
57秒前
Thi发布了新的文献求助10
57秒前
yangpengbo发布了新的文献求助10
57秒前
吃的饱饱呀完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
爱做实验的宝宝完成签到,获得积分10
1分钟前
辛勤的泽洋完成签到 ,获得积分10
1分钟前
儒雅龙完成签到 ,获得积分10
1分钟前
wwwwwl完成签到 ,获得积分10
1分钟前
xiaomingdoc完成签到 ,获得积分10
1分钟前
张正友完成签到 ,获得积分10
1分钟前
livra1058完成签到,获得积分10
1分钟前
Augenstern完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小夜子完成签到 ,获得积分10
1分钟前
Cradoc完成签到 ,获得积分10
1分钟前
zj完成签到 ,获得积分10
1分钟前
谷谷完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xp1911发布了新的文献求助10
1分钟前
王佳豪完成签到,获得积分10
2分钟前
lily完成签到 ,获得积分10
2分钟前
QP34完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599910
求助须知:如何正确求助?哪些是违规求助? 4685672
关于积分的说明 14838778
捐赠科研通 4673518
什么是DOI,文献DOI怎么找? 2538396
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1471013