催化作用
铜
甲烷
无机化学
石墨烯
吸附
化学
材料科学
拉曼光谱
电催化剂
金属
光化学
物理化学
纳米技术
电化学
电极
有机化学
冶金
物理
光学
作者
Sung‐Fu Hung,Aoni Xu,Xue Wang,Fengwang Li,Shao‐Hui Hsu,Yuhang Li,Joshua Wicks,Eduardo González Cervantes,Armin Sedighian Rasouli,Yuguang Li,Mingchuan Luo,Dae‐Hyun Nam,Ning Wang,Tao Peng,Yu Yan,Geonhui Lee,Edward H. Sargent
标识
DOI:10.1038/s41467-022-28456-9
摘要
Nitrogen-doped graphene-supported single atoms convert CO2 to CO, but fail to provide further hydrogenation to methane - a finding attributable to the weak adsorption of CO intermediates. To regulate the adsorption energy, here we investigate the metal-supported single atoms to enable CO2 hydrogenation. We find a copper-supported iron-single-atom catalyst producing a high-rate methane. Density functional theory calculations and in-situ Raman spectroscopy show that the iron atoms attract surrounding intermediates and carry out hydrogenation to generate methane. The catalyst is realized by assembling iron phthalocyanine on the copper surface, followed by in-situ formation of single iron atoms during electrocatalysis, identified using operando X-ray absorption spectroscopy. The copper-supported iron-single-atom catalyst exhibits a CO2-to-methane Faradaic efficiency of 64% and a partial current density of 128 mA cm-2, while the nitrogen-doped graphene-supported one produces only CO. The activity is 32 times higher than a pristine copper under the same conditions of electrolyte and bias.
科研通智能强力驱动
Strongly Powered by AbleSci AI