Prediction models for the risk of total knee replacement: development and validation using data from multicentre cohort studies

医学 骨关节炎 比例危险模型 物理疗法 射线照相术 队列 危险系数 预测建模 队列研究 预测值 内科学 外科 置信区间 机器学习 计算机科学 病理 替代医学
作者
Qiang Liu,Hongling Chu,Michael P. LaValley,David J. Hunter,Hua Zhang,Liyuan Tao,Siyan Zhan,Lin JianHao,Yuqing Zhang
出处
期刊:The Lancet Rheumatology [Elsevier BV]
卷期号:4 (2): e125-e134 被引量:14
标识
DOI:10.1016/s2665-9913(21)00324-6
摘要

Few prognostic prediction models for total knee replacement are available, and the role of radiographic findings in predicting its use remains unclear. We aimed to develop and validate predictive models for total knee replacement and to assess whether adding radiographic findings improves predictive performance.We identified participants with recent knee pain (in the past 3 months) in the Multicenter Osteoarthritis Study (MOST) and the Osteoarthritis Initiative (OAI). The baseline visits of MOST were initiated in 2003 and of OAI were initiated in 2004. We developed two predictive models for the risk of total knee replacement within 60 months of follow-up by fitting Cox proportional hazard models among participants in MOST. The first model included sociodemographic and anthropometric factors, medical history, and clinical measures (referred to as the clinical model). The second model added radiographic findings into the predictive model (the radiographic model). We evaluated each model's discrimination and calibration performance and assessed the incremental value of radiographic findings using both category-free net reclassification improvement (NRI) and integrated discrimination improvement (IDI). We tuned the models and externally validated them among participants in OAI.We included 2658 participants from MOST (mean age 62·4 years [SD 8·1], 1646 [61·9%] women) in the training dataset and 4060 participants from OAI (mean age 60·9 years [9·1], 2379 [58·6%] women) in the validation dataset. 290 (10·9%) participants in the training dataset and 174 (4·3%) in the validation dataset had total knee replacement. The retained predictive variables included in the clinical model were age, sex, race, history of knee arthroscopy, frequent knee pain, current use of analgesics, current use of glucosamine, body-mass index, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score, and the most predictive factors were age, race, and WOMAC pain score. The retained predictive variables in the radiographic model were age, sex, race, frequent knee pain, current use of analgesics, WOMAC pain score, and Kellgren-Lawrence grade, and the most predictive factors were Kellgren-Lawrence grade, race, and age. The C-statistic was 0·79 (95% CI 0·76-0·81) for the clinical model and 0·87 (0·85-0·99) for the radiographic model in the training dataset. The calibration slope was 0·95 (95% CI 0·86-1·05) and 0·96 (0·87-1·04), respectively. Adding radiograph findings significantly improved predictive performance with an NRI of 0·43 (95% CI 0·38-0·50) and IDI of 0·14 (95% CI: 0·10-0·18). Both models, with tuned coefficients, showed a good predictive performance among participants in the validation dataset.The risk of total knee replacement can be predicted based on common risk factors with good discrimination and calibration. Additionally, adding radiographic findings of knee osteoarthritis into the model substantially improves its predictive performance.National Natural Science Foundation of China, National Key Research and Development Program, and Beijing Municipal Science & Technology Commission.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧的从雪完成签到 ,获得积分10
2秒前
安详的语蕊完成签到,获得积分10
5秒前
淡然的剑通完成签到 ,获得积分10
6秒前
Holly完成签到,获得积分10
8秒前
科研王子完成签到,获得积分10
8秒前
宇文雨文给宇文雨文的求助进行了留言
10秒前
Ly完成签到 ,获得积分10
13秒前
23完成签到,获得积分10
15秒前
PHI完成签到 ,获得积分10
16秒前
叶未晞yi完成签到,获得积分10
18秒前
drjyang完成签到,获得积分10
22秒前
26秒前
乔巴完成签到 ,获得积分10
28秒前
正直冰露完成签到 ,获得积分10
29秒前
十月天秤完成签到,获得积分10
32秒前
33秒前
香蕉觅云应助宇文雨文采纳,获得30
35秒前
健壮惋清完成签到 ,获得积分10
35秒前
zhangguo完成签到 ,获得积分10
35秒前
HHM完成签到,获得积分10
36秒前
lalala完成签到 ,获得积分10
38秒前
细心的安双完成签到 ,获得积分10
38秒前
宋芽芽u发布了新的文献求助10
39秒前
pK完成签到 ,获得积分10
39秒前
群青完成签到 ,获得积分10
42秒前
叶子完成签到,获得积分10
43秒前
45秒前
ZDM6094完成签到 ,获得积分10
46秒前
叶子完成签到,获得积分10
46秒前
46秒前
杨涵完成签到 ,获得积分10
49秒前
小龙发布了新的文献求助10
51秒前
SCI完成签到 ,获得积分10
54秒前
雨寒完成签到 ,获得积分10
56秒前
糊糊完成签到 ,获得积分10
57秒前
小龙完成签到,获得积分10
1分钟前
Tom完成签到,获得积分10
1分钟前
1分钟前
byby完成签到,获得积分10
1分钟前
小超人完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212420
求助须知:如何正确求助?哪些是违规求助? 4388601
关于积分的说明 13664165
捐赠科研通 4249133
什么是DOI,文献DOI怎么找? 2331417
邀请新用户注册赠送积分活动 1329109
关于科研通互助平台的介绍 1282517