Prediction models for the risk of total knee replacement: development and validation using data from multicentre cohort studies

医学 骨关节炎 比例危险模型 物理疗法 射线照相术 队列 危险系数 预测建模 队列研究 预测值 内科学 外科 置信区间 机器学习 计算机科学 病理 替代医学
作者
Qiang Liu,Hongling Chu,Michael P. LaValley,David J. Hunter,Hua Zhang,Liyuan Tao,Siyan Zhan,Lin JianHao,Yuqing Zhang
出处
期刊:The Lancet Rheumatology [Elsevier]
卷期号:4 (2): e125-e134 被引量:14
标识
DOI:10.1016/s2665-9913(21)00324-6
摘要

Few prognostic prediction models for total knee replacement are available, and the role of radiographic findings in predicting its use remains unclear. We aimed to develop and validate predictive models for total knee replacement and to assess whether adding radiographic findings improves predictive performance.We identified participants with recent knee pain (in the past 3 months) in the Multicenter Osteoarthritis Study (MOST) and the Osteoarthritis Initiative (OAI). The baseline visits of MOST were initiated in 2003 and of OAI were initiated in 2004. We developed two predictive models for the risk of total knee replacement within 60 months of follow-up by fitting Cox proportional hazard models among participants in MOST. The first model included sociodemographic and anthropometric factors, medical history, and clinical measures (referred to as the clinical model). The second model added radiographic findings into the predictive model (the radiographic model). We evaluated each model's discrimination and calibration performance and assessed the incremental value of radiographic findings using both category-free net reclassification improvement (NRI) and integrated discrimination improvement (IDI). We tuned the models and externally validated them among participants in OAI.We included 2658 participants from MOST (mean age 62·4 years [SD 8·1], 1646 [61·9%] women) in the training dataset and 4060 participants from OAI (mean age 60·9 years [9·1], 2379 [58·6%] women) in the validation dataset. 290 (10·9%) participants in the training dataset and 174 (4·3%) in the validation dataset had total knee replacement. The retained predictive variables included in the clinical model were age, sex, race, history of knee arthroscopy, frequent knee pain, current use of analgesics, current use of glucosamine, body-mass index, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score, and the most predictive factors were age, race, and WOMAC pain score. The retained predictive variables in the radiographic model were age, sex, race, frequent knee pain, current use of analgesics, WOMAC pain score, and Kellgren-Lawrence grade, and the most predictive factors were Kellgren-Lawrence grade, race, and age. The C-statistic was 0·79 (95% CI 0·76-0·81) for the clinical model and 0·87 (0·85-0·99) for the radiographic model in the training dataset. The calibration slope was 0·95 (95% CI 0·86-1·05) and 0·96 (0·87-1·04), respectively. Adding radiograph findings significantly improved predictive performance with an NRI of 0·43 (95% CI 0·38-0·50) and IDI of 0·14 (95% CI: 0·10-0·18). Both models, with tuned coefficients, showed a good predictive performance among participants in the validation dataset.The risk of total knee replacement can be predicted based on common risk factors with good discrimination and calibration. Additionally, adding radiographic findings of knee osteoarthritis into the model substantially improves its predictive performance.National Natural Science Foundation of China, National Key Research and Development Program, and Beijing Municipal Science & Technology Commission.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北赊完成签到,获得积分20
刚刚
科研通AI2S应助QinQin采纳,获得10
刚刚
Azusa完成签到,获得积分10
1秒前
顽固分子完成签到 ,获得积分10
1秒前
Jing完成签到,获得积分10
3秒前
ArkZ完成签到 ,获得积分10
4秒前
俗签完成签到,获得积分10
4秒前
zhj完成签到,获得积分10
6秒前
6秒前
如泣草芥完成签到,获得积分10
7秒前
7秒前
8秒前
从容白凝完成签到,获得积分10
9秒前
10秒前
zzahyc发布了新的文献求助10
11秒前
甄的艾你完成签到,获得积分10
11秒前
Pauline完成签到 ,获得积分10
12秒前
我是老大应助Air采纳,获得10
13秒前
不是省油的灯完成签到,获得积分10
13秒前
13秒前
温暖易云发布了新的文献求助10
14秒前
诸葛烤鸭完成签到 ,获得积分10
14秒前
lilili完成签到,获得积分20
16秒前
Bizibili完成签到,获得积分10
17秒前
XianyunWang完成签到,获得积分10
17秒前
张豪杰完成签到 ,获得积分10
19秒前
雨辰发布了新的文献求助10
20秒前
时尚幻莲发布了新的文献求助10
20秒前
21秒前
22秒前
科研通AI2S应助天涯倦客采纳,获得10
23秒前
AOPs完成签到,获得积分10
23秒前
duxiao完成签到 ,获得积分10
24秒前
温暖易云完成签到,获得积分10
26秒前
AOPs发布了新的文献求助10
26秒前
TRz发布了新的文献求助10
27秒前
xiaoxiao完成签到,获得积分10
28秒前
小黑子完成签到,获得积分10
29秒前
前程似锦完成签到 ,获得积分10
30秒前
华仔应助李李采纳,获得10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790837
关于积分的说明 7796725
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301727
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194