重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Prediction models for the risk of total knee replacement: development and validation using data from multicentre cohort studies

医学 骨关节炎 比例危险模型 物理疗法 射线照相术 队列 危险系数 预测建模 队列研究 预测值 内科学 外科 置信区间 机器学习 计算机科学 病理 替代医学
作者
Qiang Liu,Hongling Chu,Michael P. LaValley,David J. Hunter,Hua Zhang,Liyuan Tao,Siyan Zhan,Lin JianHao,Yuqing Zhang
出处
期刊:The Lancet Rheumatology [Elsevier]
卷期号:4 (2): e125-e134 被引量:14
标识
DOI:10.1016/s2665-9913(21)00324-6
摘要

Few prognostic prediction models for total knee replacement are available, and the role of radiographic findings in predicting its use remains unclear. We aimed to develop and validate predictive models for total knee replacement and to assess whether adding radiographic findings improves predictive performance.We identified participants with recent knee pain (in the past 3 months) in the Multicenter Osteoarthritis Study (MOST) and the Osteoarthritis Initiative (OAI). The baseline visits of MOST were initiated in 2003 and of OAI were initiated in 2004. We developed two predictive models for the risk of total knee replacement within 60 months of follow-up by fitting Cox proportional hazard models among participants in MOST. The first model included sociodemographic and anthropometric factors, medical history, and clinical measures (referred to as the clinical model). The second model added radiographic findings into the predictive model (the radiographic model). We evaluated each model's discrimination and calibration performance and assessed the incremental value of radiographic findings using both category-free net reclassification improvement (NRI) and integrated discrimination improvement (IDI). We tuned the models and externally validated them among participants in OAI.We included 2658 participants from MOST (mean age 62·4 years [SD 8·1], 1646 [61·9%] women) in the training dataset and 4060 participants from OAI (mean age 60·9 years [9·1], 2379 [58·6%] women) in the validation dataset. 290 (10·9%) participants in the training dataset and 174 (4·3%) in the validation dataset had total knee replacement. The retained predictive variables included in the clinical model were age, sex, race, history of knee arthroscopy, frequent knee pain, current use of analgesics, current use of glucosamine, body-mass index, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score, and the most predictive factors were age, race, and WOMAC pain score. The retained predictive variables in the radiographic model were age, sex, race, frequent knee pain, current use of analgesics, WOMAC pain score, and Kellgren-Lawrence grade, and the most predictive factors were Kellgren-Lawrence grade, race, and age. The C-statistic was 0·79 (95% CI 0·76-0·81) for the clinical model and 0·87 (0·85-0·99) for the radiographic model in the training dataset. The calibration slope was 0·95 (95% CI 0·86-1·05) and 0·96 (0·87-1·04), respectively. Adding radiograph findings significantly improved predictive performance with an NRI of 0·43 (95% CI 0·38-0·50) and IDI of 0·14 (95% CI: 0·10-0·18). Both models, with tuned coefficients, showed a good predictive performance among participants in the validation dataset.The risk of total knee replacement can be predicted based on common risk factors with good discrimination and calibration. Additionally, adding radiographic findings of knee osteoarthritis into the model substantially improves its predictive performance.National Natural Science Foundation of China, National Key Research and Development Program, and Beijing Municipal Science & Technology Commission.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十里完成签到 ,获得积分10
刚刚
彭于晏应助余语羽采纳,获得10
刚刚
無屿啊-发布了新的文献求助10
1秒前
1秒前
dew应助星辰采纳,获得10
1秒前
1秒前
2秒前
小鹿儿完成签到,获得积分10
2秒前
2秒前
2秒前
dongle完成签到,获得积分10
2秒前
乐乐应助施宇宙采纳,获得30
3秒前
momomomo123发布了新的文献求助10
3秒前
研雪发布了新的文献求助10
3秒前
夕夕发布了新的文献求助10
4秒前
陈圈圈完成签到,获得积分10
4秒前
马伊发布了新的文献求助10
4秒前
4秒前
可以呵呵完成签到,获得积分10
4秒前
4秒前
Y714发布了新的文献求助10
4秒前
Wn应助科研小白采纳,获得10
4秒前
5秒前
巴布鲁斯发布了新的文献求助10
5秒前
5秒前
高高发布了新的文献求助50
5秒前
qrwyqjbsd应助wwwww采纳,获得10
5秒前
源西瓜应助jackie采纳,获得20
5秒前
6秒前
幸运雨点完成签到,获得积分10
6秒前
6秒前
6秒前
张涛发布了新的文献求助10
6秒前
6秒前
李健应助wangli采纳,获得10
6秒前
6秒前
无奈的晴完成签到,获得积分10
7秒前
7秒前
Sere发布了新的文献求助10
7秒前
果茶不热发布了新的文献求助30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466621
求助须知:如何正确求助?哪些是违规求助? 4570468
关于积分的说明 14325556
捐赠科研通 4497017
什么是DOI,文献DOI怎么找? 2463674
邀请新用户注册赠送积分活动 1452626
关于科研通互助平台的介绍 1427590