Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data

财务 供应链 精算学 业务 营销
作者
Wen Zhang,Shaoshan Yan,Jian Li,Xin Tian,Taketoshi Yoshida
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:158: 102611-102611 被引量:68
标识
DOI:10.1016/j.tre.2022.102611
摘要

• The paper uses both enterprise demographic data and financing behavioral data for credit risk prediction of SMEs in SCF. • The paper proposes the DeepRisk approach by using multi-modal deep learning to fuse the two different sources of data. • Experiments on SCF dataset demonstrate that the DeepRisk approach outperforms the baseline methods in terms of precision, recall, F1-score, AUC and economic loss. • The fusion of the two different sources of data is superior to the existing studies on credit risk prediction of SMEs in SCF. The credit risk of small and medium-sized enterprises (SMEs) in supply chain finance (SCF) is defined as the probability that the SME would default on loans derived from financing for the SCF platform. Traditional models make use of merely the static data of SMEs, such as enterprise demographic data and financial statement data, to predict the credit risk of SMEs in SCF. Nevertheless, behavioral data, which reflect the dynamic financing behavior of SMEs in SCF, are overlooked by these models, which limits the performance of credit risk prediction. To address this problem, a novel approach is proposed called DeepRisk to fuse enterprise demographic data and financing behavioral data to predict the credit risk of SMEs in SCF. We adopt the multi-modal learning strategy to fuse the two different sources of data. The concatenated vectors derived from data fusion are then used as the input of the feed forward neural network to predict the credit risk of SMEs. Experiments on a real SCF dataset demonstrate that the proposed DeepRisk approach outperforms the baseline methods in credit risk prediction in terms of precision, recall, F1-score, area under curve (AUC), and economic loss. The fusion of the two different sources of data is superior to the existing approaches to the credit risk prediction of SMEs in SCF. Both the static enterprise demographic data and the dynamic financing behavioral data are crucial to improve the credit risk prediction of SMEs. Nevertheless, the variables derived from the financing behavioral data have a better predictability than those from the enterprise demographic data. Managerial implications have been identified for decision makers involved in SCF in utilizing the benefits of SCF and in managing their credit risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
606驳回了Zn应助
1秒前
深情白风发布了新的文献求助10
1秒前
1秒前
努力的小奇给努力的小奇的求助进行了留言
1秒前
1b发布了新的文献求助10
2秒前
SI发布了新的文献求助10
2秒前
2秒前
lylyzhl发布了新的文献求助10
3秒前
单薄小鸽子完成签到 ,获得积分10
3秒前
冰清发布了新的文献求助10
3秒前
科研通AI5应助熊猫盖浇饭采纳,获得10
3秒前
4秒前
5秒前
魔幻的觅风完成签到,获得积分10
5秒前
充电宝应助Keven采纳,获得10
5秒前
LSX完成签到,获得积分10
5秒前
5秒前
Meggy完成签到,获得积分10
6秒前
CodeCraft应助豆⑧采纳,获得10
6秒前
深情安青应助stuffmatter采纳,获得10
7秒前
冷静身影发布了新的文献求助10
7秒前
Akim应助俊秀的惜霜采纳,获得10
8秒前
8秒前
9秒前
9秒前
怪蜀黍发布了新的文献求助10
10秒前
listener应助lylyzhl采纳,获得10
11秒前
研友_VZG7GZ应助honphyjiang采纳,获得10
11秒前
黑暗系发布了新的文献求助10
12秒前
852应助LLLLLLLL采纳,获得10
12秒前
充电宝应助SI采纳,获得10
12秒前
Jasper应助penghuiye采纳,获得10
13秒前
Zn举报WTS求助涉嫌违规
13秒前
大楚发布了新的文献求助10
13秒前
14秒前
15秒前
小张完成签到,获得积分10
15秒前
ting发布了新的文献求助20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126