亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data

财务 供应链 精算学 业务 营销
作者
Wen Zhang,Shaoshan Yan,Jian Li,Xin Tian,Taketoshi Yoshida
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:158: 102611-102611 被引量:73
标识
DOI:10.1016/j.tre.2022.102611
摘要

• The paper uses both enterprise demographic data and financing behavioral data for credit risk prediction of SMEs in SCF. • The paper proposes the DeepRisk approach by using multi-modal deep learning to fuse the two different sources of data. • Experiments on SCF dataset demonstrate that the DeepRisk approach outperforms the baseline methods in terms of precision, recall, F1-score, AUC and economic loss. • The fusion of the two different sources of data is superior to the existing studies on credit risk prediction of SMEs in SCF. The credit risk of small and medium-sized enterprises (SMEs) in supply chain finance (SCF) is defined as the probability that the SME would default on loans derived from financing for the SCF platform. Traditional models make use of merely the static data of SMEs, such as enterprise demographic data and financial statement data, to predict the credit risk of SMEs in SCF. Nevertheless, behavioral data, which reflect the dynamic financing behavior of SMEs in SCF, are overlooked by these models, which limits the performance of credit risk prediction. To address this problem, a novel approach is proposed called DeepRisk to fuse enterprise demographic data and financing behavioral data to predict the credit risk of SMEs in SCF. We adopt the multi-modal learning strategy to fuse the two different sources of data. The concatenated vectors derived from data fusion are then used as the input of the feed forward neural network to predict the credit risk of SMEs. Experiments on a real SCF dataset demonstrate that the proposed DeepRisk approach outperforms the baseline methods in credit risk prediction in terms of precision, recall, F1-score, area under curve (AUC), and economic loss. The fusion of the two different sources of data is superior to the existing approaches to the credit risk prediction of SMEs in SCF. Both the static enterprise demographic data and the dynamic financing behavioral data are crucial to improve the credit risk prediction of SMEs. Nevertheless, the variables derived from the financing behavioral data have a better predictability than those from the enterprise demographic data. Managerial implications have been identified for decision makers involved in SCF in utilizing the benefits of SCF and in managing their credit risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Benhnhk21完成签到,获得积分10
14秒前
漂亮的秋天完成签到 ,获得积分10
54秒前
yummm完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
1分钟前
核桃应助不安的靖柔采纳,获得10
1分钟前
核桃应助不安的靖柔采纳,获得10
1分钟前
不安的靖柔完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
whj完成签到 ,获得积分10
5分钟前
5分钟前
迟梦琪发布了新的文献求助10
5分钟前
HYQ发布了新的文献求助10
5分钟前
迟梦琪完成签到,获得积分20
5分钟前
三世完成签到 ,获得积分10
5分钟前
gszy1975完成签到,获得积分10
5分钟前
6分钟前
红影完成签到,获得积分10
6分钟前
细腻笑卉发布了新的文献求助20
7分钟前
细腻笑卉完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
feihua1完成签到 ,获得积分10
9分钟前
9分钟前
tranphucthinh发布了新的文献求助10
9分钟前
tranphucthinh完成签到,获得积分10
10分钟前
CodeCraft应助章赛采纳,获得10
11分钟前
11分钟前
SciGPT应助小冯看不懂采纳,获得10
11分钟前
科研通AI5应助羞涩的寒松采纳,获得10
12分钟前
熊熊完成签到 ,获得积分10
12分钟前
12分钟前
12分钟前
12分钟前
章赛发布了新的文献求助10
12分钟前
vivianzzz完成签到,获得积分10
12分钟前
12分钟前
12分钟前
vivianzzz发布了新的文献求助10
12分钟前
李爱国应助vivianzzz采纳,获得10
13分钟前
量子星尘发布了新的文献求助10
13分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127256
求助须知:如何正确求助?哪些是违规求助? 4330378
关于积分的说明 13493304
捐赠科研通 4165925
什么是DOI,文献DOI怎么找? 2283680
邀请新用户注册赠送积分活动 1284704
关于科研通互助平台的介绍 1224683