Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data

财务 供应链 精算学 业务 营销
作者
Wen Zhang,Shaoshan Yan,Jian Li,Xin Tian,Taketoshi Yoshida
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:158: 102611-102611 被引量:84
标识
DOI:10.1016/j.tre.2022.102611
摘要

• The paper uses both enterprise demographic data and financing behavioral data for credit risk prediction of SMEs in SCF. • The paper proposes the DeepRisk approach by using multi-modal deep learning to fuse the two different sources of data. • Experiments on SCF dataset demonstrate that the DeepRisk approach outperforms the baseline methods in terms of precision, recall, F1-score, AUC and economic loss. • The fusion of the two different sources of data is superior to the existing studies on credit risk prediction of SMEs in SCF. The credit risk of small and medium-sized enterprises (SMEs) in supply chain finance (SCF) is defined as the probability that the SME would default on loans derived from financing for the SCF platform. Traditional models make use of merely the static data of SMEs, such as enterprise demographic data and financial statement data, to predict the credit risk of SMEs in SCF. Nevertheless, behavioral data, which reflect the dynamic financing behavior of SMEs in SCF, are overlooked by these models, which limits the performance of credit risk prediction. To address this problem, a novel approach is proposed called DeepRisk to fuse enterprise demographic data and financing behavioral data to predict the credit risk of SMEs in SCF. We adopt the multi-modal learning strategy to fuse the two different sources of data. The concatenated vectors derived from data fusion are then used as the input of the feed forward neural network to predict the credit risk of SMEs. Experiments on a real SCF dataset demonstrate that the proposed DeepRisk approach outperforms the baseline methods in credit risk prediction in terms of precision, recall, F1-score, area under curve (AUC), and economic loss. The fusion of the two different sources of data is superior to the existing approaches to the credit risk prediction of SMEs in SCF. Both the static enterprise demographic data and the dynamic financing behavioral data are crucial to improve the credit risk prediction of SMEs. Nevertheless, the variables derived from the financing behavioral data have a better predictability than those from the enterprise demographic data. Managerial implications have been identified for decision makers involved in SCF in utilizing the benefits of SCF and in managing their credit risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Gsupre采纳,获得10
刚刚
Jerry发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
若宫伊芙应助dgg采纳,获得10
1秒前
1秒前
科研通AI6应助栀蓝采纳,获得10
1秒前
勇胜发布了新的文献求助10
1秒前
1秒前
justMYF完成签到,获得积分10
2秒前
sjc完成签到,获得积分10
2秒前
KK发布了新的文献求助10
4秒前
wanci应助独特的如雪采纳,获得10
4秒前
ayayaya发布了新的文献求助10
5秒前
5秒前
5秒前
Fransic发布了新的文献求助10
5秒前
6秒前
菜园我最菜完成签到,获得积分10
6秒前
小马甲应助自然映梦采纳,获得10
7秒前
7秒前
7秒前
田様应助墨明棋妙采纳,获得10
7秒前
爆米花应助小畅采纳,获得10
8秒前
呱呱完成签到,获得积分10
8秒前
YUU发布了新的文献求助10
8秒前
dds完成签到,获得积分10
8秒前
crazygg发布了新的文献求助10
8秒前
Kris完成签到,获得积分10
9秒前
十四班副班长完成签到,获得积分10
9秒前
陈倩完成签到,获得积分10
10秒前
10秒前
10秒前
drfwjuikesv完成签到,获得积分10
10秒前
10秒前
11秒前
Ava应助rwewe采纳,获得10
11秒前
Rando应助游大达采纳,获得10
11秒前
12秒前
Cenhuan完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660641
求助须知:如何正确求助?哪些是违规求助? 4835016
关于积分的说明 15091506
捐赠科研通 4819242
什么是DOI,文献DOI怎么找? 2579181
邀请新用户注册赠送积分活动 1533670
关于科研通互助平台的介绍 1492441