Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data

财务 供应链 精算学 业务 营销
作者
Wen Zhang,Shaoshan Yan,Jian Li,Xin Tian,Taketoshi Yoshida
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:158: 102611-102611 被引量:73
标识
DOI:10.1016/j.tre.2022.102611
摘要

• The paper uses both enterprise demographic data and financing behavioral data for credit risk prediction of SMEs in SCF. • The paper proposes the DeepRisk approach by using multi-modal deep learning to fuse the two different sources of data. • Experiments on SCF dataset demonstrate that the DeepRisk approach outperforms the baseline methods in terms of precision, recall, F1-score, AUC and economic loss. • The fusion of the two different sources of data is superior to the existing studies on credit risk prediction of SMEs in SCF. The credit risk of small and medium-sized enterprises (SMEs) in supply chain finance (SCF) is defined as the probability that the SME would default on loans derived from financing for the SCF platform. Traditional models make use of merely the static data of SMEs, such as enterprise demographic data and financial statement data, to predict the credit risk of SMEs in SCF. Nevertheless, behavioral data, which reflect the dynamic financing behavior of SMEs in SCF, are overlooked by these models, which limits the performance of credit risk prediction. To address this problem, a novel approach is proposed called DeepRisk to fuse enterprise demographic data and financing behavioral data to predict the credit risk of SMEs in SCF. We adopt the multi-modal learning strategy to fuse the two different sources of data. The concatenated vectors derived from data fusion are then used as the input of the feed forward neural network to predict the credit risk of SMEs. Experiments on a real SCF dataset demonstrate that the proposed DeepRisk approach outperforms the baseline methods in credit risk prediction in terms of precision, recall, F1-score, area under curve (AUC), and economic loss. The fusion of the two different sources of data is superior to the existing approaches to the credit risk prediction of SMEs in SCF. Both the static enterprise demographic data and the dynamic financing behavioral data are crucial to improve the credit risk prediction of SMEs. Nevertheless, the variables derived from the financing behavioral data have a better predictability than those from the enterprise demographic data. Managerial implications have been identified for decision makers involved in SCF in utilizing the benefits of SCF and in managing their credit risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
刚刚
Xx完成签到,获得积分10
1秒前
只因完成签到,获得积分10
1秒前
1秒前
深情笑南完成签到,获得积分20
1秒前
asdfghj发布了新的文献求助10
2秒前
zz应助Shirley采纳,获得30
2秒前
开朗发夹完成签到,获得积分10
3秒前
同學你該吃藥了完成签到 ,获得积分10
3秒前
3秒前
4秒前
酷波er应助fisher采纳,获得40
4秒前
九命猫完成签到 ,获得积分10
4秒前
topsun发布了新的文献求助10
5秒前
皮三问完成签到,获得积分10
5秒前
烟花应助紫愿采纳,获得10
5秒前
Yyy完成签到,获得积分10
5秒前
cowboy123完成签到,获得积分10
5秒前
5秒前
景代丝发布了新的文献求助10
5秒前
yiyiyiyiyi//完成签到,获得积分10
5秒前
Qi完成签到 ,获得积分10
6秒前
俊秀的安阳完成签到,获得积分10
6秒前
郁金香完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
小曾完成签到,获得积分10
6秒前
www发布了新的文献求助10
7秒前
zxzxzxzxzxzx完成签到,获得积分20
7秒前
科研狗完成签到,获得积分10
7秒前
gny完成签到,获得积分10
8秒前
乖张发布了新的文献求助10
8秒前
8秒前
ll完成签到,获得积分20
8秒前
abcdefj完成签到,获得积分10
9秒前
hjyylab应助冯123采纳,获得10
9秒前
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016344
求助须知:如何正确求助?哪些是违规求助? 3556478
关于积分的说明 11321199
捐赠科研通 3289279
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060