Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries

材料科学 阳极 锂(药物) 扩散 扩散阻挡层 兴奋剂 离子 纳米技术 化学工程 光电子学 物理化学 热力学 图层(电子) 内分泌学 工程类 化学 物理 医学 量子力学 电极
作者
Yan Zhang,Cong Kang,Wei Zhao,Baoyu Sun,Xiangjun Xiao,Hua Huo,Yulin Ma,Pengjian Zuo,Shuaifeng Lou,Geping Yin
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:47: 178-186 被引量:52
标识
DOI:10.1016/j.ensm.2022.01.061
摘要

Improving the ion/electron transport of TiNb2O7 composite is of great significance for achieving fast-charging lithium-ion batteries. Herein, we firstly report a rare-earth element engineering to tailor the bandgap and crystallographic structure for the dual function of electronic and ionic conductivity. Tb-doped TiNb2O7 (denoted as Tbx-TNO, x=0, 0.005, 0.010, 0.015) are successfully fabricated through a one-step solid-state reaction strategy. The Rietveld refinement technology of X-ray diffraction (XRD) demonstrates an effective substitution of Tb in the central sites of Nb-O octahedral. Significantly, in-situ XRD and ex-situ TEM techniques reveal the positive influence of Tb doping on the underlying ion transport behavior, which is verified by the increased unit cell volume, decreased mechanic effects, and promoted Li+-diffusion kinetics. DFT calculations demonstrate a narrow down of bandgap (from insulators to semiconductors) and reduction of ion-diffusion barrier in various migration modes, which lead to substantially enhanced ion/electron conductivities of Tb-TiNb2O7 microrod. Benefiting from the structural merits, the Tb0.01-TiNb2O7 presented outstanding rate capability (a reversible capacity of 192.8 mA h g−1 at 50 C) and an impressive cycle lifespan, corresponding to an ultra-high retention ratio of 98.9% (203.2 mA h g−1) over 1000 cycles. A pouch cell based on LiNi0.8Co0.1Mn0.1O2 cathodes and the Tb0.01-TiNb2O7 anodes exhibits potential application with superior rate capability and cycling stability. This work provides a simple strategy to enhance the rate-performance of TiNb2O7, making a guideline to construct fast-charging batteries with long cycling life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博ge发布了新的文献求助10
刚刚
1秒前
葶儿发布了新的文献求助10
1秒前
hgcyp完成签到,获得积分10
6秒前
ysh完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
9秒前
wang完成签到,获得积分10
10秒前
Jzhang应助Yimim采纳,获得10
11秒前
沐风发布了新的文献求助20
12秒前
汉关发布了新的文献求助10
14秒前
14秒前
葶儿完成签到,获得积分10
14秒前
安详中蓝完成签到 ,获得积分10
15秒前
呆萌士晋发布了新的文献求助10
15秒前
15秒前
17秒前
呆头发布了新的文献求助10
19秒前
若水发布了新的文献求助200
20秒前
20秒前
21秒前
子川发布了新的文献求助10
21秒前
大头娃娃没下巴完成签到,获得积分10
23秒前
liyuchen完成签到,获得积分10
23秒前
CipherSage应助Lxxx_7采纳,获得10
24秒前
烟花应助永远少年采纳,获得10
24秒前
meng发布了新的文献求助10
26秒前
科研通AI5应助贪吃的猴子采纳,获得10
28秒前
28秒前
可爱的彩虹完成签到,获得积分10
28秒前
小确幸完成签到,获得积分10
28秒前
彭于晏应助毛毛虫采纳,获得10
29秒前
LilyChen完成签到 ,获得积分10
29秒前
Owen应助Su采纳,获得10
29秒前
29秒前
29秒前
30秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824