亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Representation High-Resolution Remote Sensing Image Scene Classification via Contrastive Learning Convolutional Neural Network

卷积神经网络 人工智能 计算机科学 深度学习 模式识别(心理学) 上下文图像分类 分类器(UML) 特征学习 数据集 监督学习
作者
Fengpeng Li,Jiabao Li,Wei Han,Ruyi Feng,Lizhe Wang
出处
期刊:Photogrammetric Engineering and Remote Sensing [American Society for Photogrammetry and Remote Sensing]
卷期号:87 (8): 577-591
标识
DOI:10.14358/pers.87.8.577
摘要

Inspired by the outstanding achievement of deep learning, supervised deep learning representation methods for high-spatial-resolution remote sensing image scene classification obtained state-of-the-art performance. However, supervised deep learning representation methods need a considerable amount of labeled data to capture class-specific features, limiting the application of deep learning-based methods while there are a few labeled training samples. An unsupervised deep learning representation, high-resolution remote sensing image scene classification method is proposed in this work to address this issue. The proposed method, called contrastive learning, narrows the distance between positive views: color channels belonging to the same images widens the gaps between negative view pairs consisting of color channels from different images to obtain class-specific data representations of the input data without any supervised information. The classifier uses extracted features by the convolutional neural network (CNN)-based feature extractor with labeled information of training data to set space of each category and then, using linear regression, makes predictions in the testing procedure. Comparing with existing unsupervised deep learning representation high-resolution remote sensing image scene classification methods, contrastive learning CNN achieves state-of-the-art performance on three different scale benchmark data sets: small scale RSSCN7 data set, midscale aerial image data set, and large-scale NWPU-RESISC45 data set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助默默的板栗采纳,获得10
2秒前
26秒前
34秒前
BowieHuang应助科研通管家采纳,获得10
35秒前
CodeCraft应助科研通管家采纳,获得10
35秒前
小唐完成签到,获得积分10
39秒前
1分钟前
1分钟前
1分钟前
1分钟前
chenlc971125完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
loitinsuen完成签到,获得积分10
2分钟前
2分钟前
在水一方应助me采纳,获得10
2分钟前
2分钟前
2分钟前
默默的板栗完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
外向的妍完成签到,获得积分10
2分钟前
走啊走应助绝世高手采纳,获得30
2分钟前
雪白的听寒完成签到 ,获得积分10
2分钟前
慕青应助简单的凡儿采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
曦耀发布了新的文献求助20
4分钟前
黄嘉慧完成签到 ,获得积分10
4分钟前
MGraceLi_sci完成签到,获得积分10
5分钟前
所所应助zhanghua采纳,获得10
5分钟前
5分钟前
兆兆完成签到 ,获得积分10
5分钟前
zhanghua发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534236
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582465
捐赠科研通 4562539
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450924