Identification and Validation of Co-Expressed Immune-Related Gene Signature Affecting the Pattern of Immune Infiltrating in Esophageal Cancer

免疫系统 免疫疗法 基因 食管癌 基因签名 基因表达 食管鳞状细胞癌 生物 计算生物学 癌症 癌症研究 免疫学 遗传学
作者
Birong Dong,Rui Cheng,Hao Zeng,Linyan Chen,Lixing Zhou
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:26 (4): 756-768
标识
DOI:10.2174/1386207325666220705105906
摘要

Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive tract, and its molecular mechanisms have not been fully clarified. This study aimed to evaluate the immune infiltration pattern of esophageal cancer through a gene co-expression network, and to provide biomarkers for immunotherapy of esophageal cancer.We downloaded RNA-seq data of ESCC samples from GSE53625 and GSE66258 datasets, then assessed the immune score and tumor purity through the ESTIMATE algorithm. Next, a co-expression network was constructed by the weighted gene co-expression network analysis, and the key co-expressed immune- related genes were identified on the basis of existing human immune-related genes. Afterward, we utilized bioinformatics algorithms including GSVA, CIBERSORT, and ssGSEA to clarify the relationship between hub genes and immune infiltration patterns. Finally, these hub genes were used to evaluate the sensitivity to immunotherapy by the subclass mapping algorithm, which were further validated by digital pathology through the Hover- Net algorithm.Sixteen immune-related genes with robust expression characteristics were identified and used to build gene signatures. The expression of gene signature was significantly related to the immune infiltration pattern and immunotherapy sensitivity prediction in patients with esophageal cancer. Consistent with previous studies, genetic changes at the level of somatic mutations such as NFE2L2 were revealed.A total of 16 immune-related genes with the total expression gene signature can be used as biomarkers for immunotherapy of esophageal squamous cell carcinoma. Its molecular mechanisms deserve further study to guide clinical treatment in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fangjie应助半糖糖采纳,获得30
刚刚
傲娇梦旋发布了新的文献求助10
3秒前
3秒前
VIAI完成签到,获得积分10
4秒前
5秒前
6秒前
zz完成签到,获得积分20
6秒前
7秒前
8秒前
传奇3应助academician采纳,获得10
8秒前
zho应助lezongyang采纳,获得10
8秒前
123发布了新的文献求助10
8秒前
帮帮小菜鸡关注了科研通微信公众号
10秒前
TonyLee应助张达采纳,获得10
11秒前
谨慎含双完成签到,获得积分10
12秒前
12秒前
13秒前
PQ完成签到,获得积分10
13秒前
13秒前
傲娇梦旋发布了新的文献求助10
13秒前
无名指完成签到 ,获得积分10
14秒前
16秒前
大个应助123采纳,获得10
16秒前
Aloha完成签到,获得积分10
17秒前
cdercder应助取名叫做利采纳,获得10
17秒前
小二郎应助取名叫做利采纳,获得10
17秒前
cdercder应助取名叫做利采纳,获得10
17秒前
cdercder应助取名叫做利采纳,获得10
18秒前
Akim应助取名叫做利采纳,获得30
18秒前
研友_VZG7GZ应助取名叫做利采纳,获得10
18秒前
CodeCraft应助取名叫做利采纳,获得10
18秒前
赘婿应助取名叫做利采纳,获得10
18秒前
Ava应助取名叫做利采纳,获得10
18秒前
18秒前
fanfan发布了新的文献求助10
19秒前
Duan1zz完成签到,获得积分10
20秒前
顾矜应助怡然代云采纳,获得10
20秒前
21秒前
Hao驳回了大模型应助
21秒前
abocide完成签到,获得积分10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736377
求助须知:如何正确求助?哪些是违规求助? 3280179
关于积分的说明 10019099
捐赠科研通 2996871
什么是DOI,文献DOI怎么找? 1644310
邀请新用户注册赠送积分活动 781891
科研通“疑难数据库(出版商)”最低求助积分说明 749622