医学
接收机工作特性
无线电技术
曲线下面积
腺癌
脑转移
放射科
核医学
内科学
肿瘤科
转移
癌症
作者
Ran Cao,Ziyan Pang,Xiaoyu Wang,Zhe Du,Huan‐Huan Chen,Jiani Liu,Zhibin Yue,Huan Wang,Yahong Luo,Xiran Jiang
标识
DOI:10.1088/1361-6560/ac7192
摘要
Objective.To develop and externally validate habitat-based MRI radiomics for preoperative prediction of the EGFR mutation status based on brain metastasis (BM) from primary lung adenocarcinoma (LA).Approach.We retrospectively reviewed 150 and 38 patients from hospital 1 and hospital 2 between January 2017 and December 2021 to form a primary and an external validation cohort, respectively. Radiomics features were calculated from the whole tumor (W), tumor active area (TAA) and peritumoral oedema area (POA) in the contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) MRI image. The least absolute shrinkage and selection operator was applied to select the most important features and to develop radiomics signatures (RSs) based on W (RS-W), TAA (RS-TAA), POA (RS-POA) and in combination (RS-Com). The area under receiver operating characteristic curve (AUC) and accuracy analysis were performed to assess the performance of radiomics models.Main results.RS-TAA and RS-POA outperformed RS-W in terms of AUC, ACC and sensitivity. The multi-region combined RS-Com showed the best prediction performance in the primary validation (AUCs, RS-Com versus RS-W versus RS-TAA versus RS-POA, 0.901 versus 0.699 versus 0.812 versus 0.883) and external validation (AUCs, RS-Com versus RS-W versus RS-TAA versus RS-POA, 0.900 versus 0.637 versus 0.814 versus 0.842) cohort.Significance.The developed habitat-based radiomics models can accurately detect the EGFR mutation in patients with BM from primary LA, and may provide a preoperative basis for personal treatment planning.
科研通智能强力驱动
Strongly Powered by AbleSci AI