Multi-scale Flow-based Occluding Effect and Content Separation for Cartoon Animations.

计算机科学 杠杆(统计) 分割 动画 人工智能 修补 计算机视觉 计算机图形学(图像)
作者
Cheng Xu,Wei Qu,Xuemiao Xu,Xueting Liu
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tvcg.2022.3174656
摘要

Occluding effects have been frequently used to present weather conditions and environments in cartoon animations, such as raining, snowing, moving leaves, and moving petals. While these effects greatly enrich the visual appeal of the cartoon animations, they may also cause undesired occlusions on the content area, which significantly complicate the analysis and processing of the cartoon animations. In this paper, we make the first attempt to separate the occluding effects and content for cartoon animations. The major challenge of this problem is that, unlike natural effects that are realistic and small-sized, the effects of cartoons are usually stylistic and large-sized. Besides, effects in cartoons are manually drawn, so their motions are more unpredictable than realistic effects. To separate occluding effects and content for cartoon animations, we propose to leverage the difference in the motion patterns of the effects and the content, and capture the locations of the effects based on a multi-scale flow-based effect prediction (MFEP) module. A dual-task learning system is designed to extract the effect video and reconstruct the effect-removed content video at the same time. We apply our method on a large number of cartoon videos of different content and effects. Experiments show that our method significantly outperforms the existing methods. We further demonstrate how the separated effects and content facilitate the analysis and processing of cartoon videos through different applications, including segmentation, inpainting, and effect migration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LT完成签到,获得积分10
刚刚
含蓄灵薇完成签到 ,获得积分10
刚刚
zhengzehong完成签到,获得积分10
1秒前
1秒前
稻草人完成签到 ,获得积分10
3秒前
zho发布了新的文献求助30
4秒前
4秒前
cc只会嘻嘻完成签到 ,获得积分10
4秒前
zink驳回了ding应助
4秒前
习习发布了新的文献求助10
4秒前
经法发布了新的文献求助10
5秒前
5秒前
5秒前
tong完成签到,获得积分10
5秒前
L~完成签到,获得积分10
5秒前
kyokukou完成签到,获得积分10
5秒前
xiaofeiyu完成签到,获得积分10
5秒前
大力曲奇完成签到,获得积分10
6秒前
乐乐应助崔梦楠采纳,获得10
6秒前
6秒前
6秒前
无奈梦岚完成签到,获得积分10
6秒前
yug发布了新的文献求助10
6秒前
蒋时晏完成签到,获得积分0
7秒前
JamesPei应助zz采纳,获得10
7秒前
MADKAI发布了新的文献求助10
7秒前
7秒前
脑洞疼应助Leexxxhaoo采纳,获得10
8秒前
8秒前
8秒前
RC_Wang应助东东采纳,获得10
8秒前
大脸妹发布了新的文献求助10
8秒前
两张发布了新的文献求助10
9秒前
9秒前
Akim应助执着的小蘑菇采纳,获得10
9秒前
调研昵称发布了新的文献求助10
9秒前
念念发布了新的文献求助10
10秒前
畅快的鱼发布了新的文献求助10
10秒前
搞怪藏今完成签到 ,获得积分10
11秒前
yu发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678