亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Profiles of motivation and engagement in foreign language learning: Associations with emotional factors, academic achievement, and demographic features

心理学 多项式logistic回归 对比度(视觉) 焦虑 社会心理学 外语 逻辑回归 数学教育 计算机科学 精神科 机器学习 人工智能
作者
Jiajing Li,Ronnel B. King,Chuang Wang
出处
期刊:System [Elsevier]
卷期号:108: 102820-102820 被引量:61
标识
DOI:10.1016/j.system.2022.102820
摘要

Motivation and engagement have long been recognized as determinants of foreign language learning. However, prior studies have mainly used variable-centered approaches to explore their relationships with key learning-related outcomes. Individual differences in foreign language learners' motivation and engagement and how they are associated with other language learning factors remain underexplored. Therefore, we employed a person-centered approach (i.e., latent profile analysis) to identify profiles of motivation and engagement in foreign language learning among 532 Chinese university students. We conducted analyses of variance to explore the differences in emotional factors and academic performance across profiles. Finally, multinomial logistic regression analysis was utilized to investigate how demographic features differed across profiles. Four profiles were identified that characterized Chinese university students' motivation and engagement in foreign language learning. They were labeled as "Demotivated and Disengaged", "Motivated and Engaged", "Demotivated but Engaged", and "Moderately Motivated and Engaged". Results also indicated that these four profiles showed significantly different degrees of enjoyment, anxiety, and academic performance. "Motivated and Engaged" learners demonstrated the most adaptive outcomes, in contrast to "Demotivated and Disengaged" EFL learners. College major did not predict profile membership, but age, gender, and years of learning English did. Theoretical and practical implications are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC应助科研通管家采纳,获得30
40秒前
VDC应助科研通管家采纳,获得30
40秒前
VDC应助科研通管家采纳,获得30
40秒前
fairy完成签到 ,获得积分10
1分钟前
1分钟前
在水一方应助单纯的映真采纳,获得10
1分钟前
脑洞疼应助研友_R2D2采纳,获得10
1分钟前
1分钟前
欣欣完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
研友_R2D2发布了新的文献求助10
2分钟前
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
鱿鱼起司发布了新的文献求助10
3分钟前
4分钟前
4分钟前
VDC应助科研通管家采纳,获得30
4分钟前
VDC应助科研通管家采纳,获得30
4分钟前
4分钟前
安青兰完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
安年完成签到 ,获得积分10
6分钟前
6分钟前
汉堡包应助王王碎冰冰采纳,获得10
7分钟前
7分钟前
555557发布了新的文献求助10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389068
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472848
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553