生物膜
抗菌活性
细菌
大肠杆菌
催化作用
材料科学
过氧化物酶
光热效应
光热治疗
化学
纳米技术
生物化学
酶
生物
遗传学
基因
作者
Shaoying He,Yun Feng,Qian Sun,Zhiai Xu,Wen Zhang
标识
DOI:10.1021/acsami.2c00434
摘要
Bacterial infection is still a thorny problem threatening human health, and nanozymes offer a promising alternative strategy to combat the health threat posed by bacterial infection. However, the antibacterial efficacies of nanozymes are unsatisfactory because of low catalytic activity of nanozymes and their inability to trap bacteria. Herein, a multifunctional nanozyme, polydopamine (PDA)-modified copper oxide (CuxO-PDA) is designed to overcome this challenge. CuxO-PDA showed peroxidase-mimicking activity and the catalytic activity was enhanced upon near-infrared (NIR) irradiation. CuxO-PDA was negatively charged under neutral or alkaline condition and showed no obvious peroxidase-mimicking activity. On the contrary, the surface charge of CuxO-PDA can be switched to positive under acidic conditions, which can target negatively charged bacteria. More interestingly, well-dispersed CuxO-PDA can aggregate rapidly under NIR irradiation, which trapped the bacteria and nanozymes together. It was found that shortening the distance between nanozyme and bacteria could improve the antibacterial effect. The obtained CuxO-PDA can cause DNA degradation, lipid peroxidation, and biofilm eradication. CuxO-PDA showed good antibacterial effect against two kinds of representative bacteria, Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The experiment in vivo further proved favorable antibacterial activity of CuxO-PDA nanozyme.
科研通智能强力驱动
Strongly Powered by AbleSci AI