Semiautomated intraoperative measurement of Cobb angle and coronal C7 plumb line using deep learning and computer vision for scoliosis correction: a feasibility study

柯布角 医学 冠状面 脊柱侧凸 人工智能 尸体 手术计划 畸形 口腔正畸科 计算机视觉 外科 计算机科学 放射科
作者
Parth Gami,Kelly Qiu,Sindhu Kannappan,Yoel Alperin,Gaetano De Biase,Ian A. Buchanan,Alfredo Quiñones‐Hinojosa,Kingsley Abode-Iyamah
出处
期刊:Journal of neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:37 (5): 713-721 被引量:3
标识
DOI:10.3171/2022.4.spine22133
摘要

Scoliosis is a degenerative disease with a 3D deformity in the alignment of the spinal column. Surgical spinal correction outcomes are heavily dependent on the surgeon's expertise and use of visual cues because of time requirements, lack of automation, and radiation exposure associated with current intraoperative measurement techniques. In this study, the authors sought to validate a novel, nonradiographic, and semiautomated device that measures spinal alignment intraoperatively using deep learning and computer vision.To obtain spinal alignment metrics intraoperatively, the surgeon placed 3D-printed markers made of acrylonitrile butadiene styrene (ABS) plastic at designated locations in the surgical field. With the high-definition camera of the device, the surgeon can take an image of the markers in the surgical field. Images are processed through a computer vision model that detects the location of the markers and calculates the Cobb angle and coronal plumb line. The marker detection model was trained on 100 images and tested on 130 images of the ABS markers in various conditions. To verify the Cobb angle calculation, 50 models of angle templates from 0° to 180° in 3.6735° increments were created for testing. To verify the plumb line calculation, 21 models of plumb line measurements from -10 to +10 cm in increments of 1 cm were created for testing. A validation study was performed on a scoliotic cadaver model, and the radiographic calculations for Cobb angle and plumb line were compared with the device's calculations.The area under the curve for the marker detection model was 0.979 for Cobb angle white, 0.791 for Cobb angle black, and 1 for the plumb line model. The average absolute difference between expected and measured Cobb angles on the verification models was 1.726° ± 1.259°, within the clinical acceptable error of 5°. The average absolute difference between the expected and measured plumb lines on the verification models was 0.415 ± 0.255 cm. For the cadaver validation study, the differences between the radiographic and device calculations for the Cobb angle and plumb line were 2.78° and 0.29 cm, respectively.The authors developed and validated a nonradiographic, semiautomated device that utilizes deep learning and computer vision to measure spinal metrics intraoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duang完成签到,获得积分10
刚刚
湘玉给你溜肥肠完成签到,获得积分10
1秒前
勿忘发布了新的文献求助10
1秒前
爆炸boom完成签到 ,获得积分10
1秒前
星辰大海应助xutaiyu采纳,获得10
2秒前
CICI完成签到,获得积分20
2秒前
2秒前
四夕完成签到 ,获得积分10
2秒前
3秒前
酷波er应助翻似烂柯人采纳,获得10
4秒前
上官若男应助generaliu采纳,获得10
4秒前
4秒前
hy完成签到,获得积分10
4秒前
渊_完成签到,获得积分10
4秒前
友好的灯泡完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
倪满分发布了新的文献求助10
6秒前
6秒前
小小小肥鸡完成签到,获得积分10
7秒前
7秒前
lin完成签到,获得积分10
8秒前
昏睡的咖啡完成签到,获得积分10
8秒前
8秒前
颜yy完成签到,获得积分20
8秒前
fd163c应助小星采纳,获得10
8秒前
webstertx发布了新的文献求助30
10秒前
10秒前
冯佩完成签到,获得积分10
10秒前
10秒前
有结果发布了新的文献求助10
11秒前
啦啦啦啦啦完成签到 ,获得积分10
11秒前
tantan发布了新的文献求助10
11秒前
Ava应助znsmaqwdy采纳,获得10
11秒前
11秒前
guoqing完成签到,获得积分10
11秒前
穆青发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885484
求助须知:如何正确求助?哪些是违规求助? 4170303
关于积分的说明 12941181
捐赠科研通 3931098
什么是DOI,文献DOI怎么找? 2156833
邀请新用户注册赠送积分活动 1175276
关于科研通互助平台的介绍 1079849