碳化
催化作用
吸附
氮气
氢氧化钾
微型多孔材料
碳纤维
化学工程
无机化学
热解
材料科学
活性炭
化学
有机化学
复合材料
复合数
工程类
作者
Xiaodi Zhang,Ying Xu,Guojie Zhang,Chenlei Wu,Jun Liu,Yongkang Lv
标识
DOI:10.1016/j.ijhydene.2022.05.222
摘要
Nitrogen (N)-doped carbon materials have become promising candidates for many applications. In this paper, the biomass activated carbon (BC) was obtained by carbonization and activation of soybean meal. Using soybean meal as the precursor, potassium hydroxide (KOH) as the activator and melamine as the nitrogen source, a series of N-doped porous biomass carbons (H-NC-X) with different N contents were achieved via a facile post-treatment nitrogen doping strategy. Then these samples were used as a catalyst for dry reforming of methane (DRM) reaction and an adsorbent for CO2 capture. Among all the investigated samples, BC has the largest specific surface area and the best pore structure characteristics, showing the best CO2 adsorption capacity. However, when BC was used as a catalyst for DRM reaction, it showed the worst catalytic performance. After nitrogen doping treatment, the CO2 adsorption capacity of the prepared N-doped biomass porous carbon decreased gradually with the increase of the introduced N content. This is mainly due to the destruction of the microporous structure of porous carbon by post-processing nitrogen doping. In contrast, when nitrogen-doped porous carbon was used as the reforming catalyst, the catalytic activity increased with the increase of the introduced N content. The order was: H-NC-30>H-NC-20>H-NC-10. This indicates that when nitrogen-doped porous carbon was used as an adsorbent, the pore structure plays a major role; while when it was used as a reforming catalyst, nitrogen functional groups are the major active sites. This study provides a promising N-doped carbon material for effect CO2 adsorption and DRM reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI