亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Perfect Imperfections in Electrocatalysts

材料科学 析氧 纳米技术 纳米材料 煅烧 电池(电) 氧化物 电化学 分解水 钙钛矿(结构) 催化作用 化学工程 电极 化学 冶金 生物化学 功率(物理) 物理 物理化学 光催化 量子力学 工程类
作者
Rahul Majee,Sahanaz Parvin,Quazi Arif Islam,Ashwani Kumar,Bharati Debnath,Surajit Mondal,Subhajit Bhattacharjee,Satarupa Das,Arun Kumar,Sayan Bhattacharyya
出处
期刊:Chemical Record [Wiley]
卷期号:22 (9) 被引量:15
标识
DOI:10.1002/tcr.202200070
摘要

Abstract Modern day electrochemical devices find applications in a wide range of industrial sectors, from consumer electronics, renewable energy management to pollution control by electric vehicles and reduction of greenhouse gas. There has been a surge of diverse electrochemical systems which are to be scaled up from the lab‐scale to industry sectors. To achieve the targets, the electrocatalysts are continuously upgraded to meet the required device efficiency at a low cost, increased lifetime and performance. An atomic scale understanding is however important for meeting the objectives. Transitioning from the bulk to the nanoscale regime of the electrocatalysts, the existence of defects and interfaces is almost inevitable, significantly impacting (augmenting) the material properties and the catalytic performance. The intrinsic defects alter the electronic structure of the nanostructured catalysts, thereby boosting the performance of metal‐ion batteries, metal‐air batteries, supercapacitors, fuel cells, water electrolyzers etc. This account presents our findings on the methods to introduce measured imperfections in the nanomaterials and the impact of these atomic‐scale irregularities on the activity for three major reactions, oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). Grain boundary (GB) modulation of the (ABO 3 ) n type perovskite oxide by noble metal doping is a propitious route to enhance the OER/ORR bifunctionality for zinc‐air battery (ZAB). The perovskite oxides can be tuned by calcination at different temperatures to alter the oxygen vacancy, GB fraction and overall reactivity. The oxygen defects, unsaturated coordination environment and GBs can turn a relatively less active nanostructure into an efficient redox active catalyst by imbibing plenty of electrochemically active sites. Obviously, the crystalline GB interface is a prerequisite for effective electron flow, which is also applicable for the crystalline surface oxide shell on metal alloy core of the nanoparticles (NPs). The oxygen vacancy of two‐dimensional (2D) perovskite oxide can be made reversible by the A‐site termination of the nanosheets, facilitating the reversible entry and exit of a secondary phase during the redox processes. In several instances, the secondary phases have been observed to introduce the right proportion of structural defects and orbital occupancies for adsorption and desorption of reaction intermediates. Also, heterogeneous interfaces can be created by wrapping the perovskite oxide with negatively charged surface by layered double hydroxide (LDH) can promote the OER process. In another approach, ion intercalation at the 2D heterointerfaces steers the interlayer spacing that can influence the mass diffusion. Similar to anion vacancy, controlled formation of the cation vacancies can be achieved by exsolving the B‐site cations of perovskite oxides to surface anchored catalytically active metal/alloy NPs. In case of the alloy electrocatalysts, incomplete solid solution by two or more mutually immiscible metals results in heterogeneous alloys having differently exposed facets with complementary functionalities. From the future perspective, new categories of defect structures including the 2D empty spaces or voids leading to undercoordinated sites, the multiple interfaces in heterogeneous alloys, antisite defects between anions and cations, and the defect induced inverse charge transfer should bring new dimensionalities to this riveting area of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
15秒前
20秒前
20秒前
Murphy发布了新的文献求助10
24秒前
zho发布了新的文献求助10
33秒前
苗玉完成签到,获得积分10
33秒前
Murphy完成签到,获得积分10
48秒前
51秒前
震动的安柏完成签到,获得积分20
53秒前
JamesPei应助芝士猕猴桃采纳,获得10
55秒前
1分钟前
帅气绮露发布了新的文献求助10
1分钟前
1分钟前
芝士猕猴桃完成签到,获得积分10
1分钟前
1分钟前
Simon完成签到 ,获得积分10
1分钟前
所所应助芝士猕猴桃采纳,获得10
1分钟前
1分钟前
morena发布了新的文献求助10
1分钟前
zho发布了新的文献求助10
1分钟前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
Umair发布了新的文献求助10
2分钟前
LNE完成签到,获得积分10
2分钟前
Zhai完成签到 ,获得积分10
2分钟前
CodeCraft应助Zhouyang采纳,获得10
2分钟前
Umair完成签到,获得积分10
2分钟前
2分钟前
xiaozhao完成签到 ,获得积分10
2分钟前
2分钟前
morena发布了新的文献求助10
2分钟前
大个应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
zho发布了新的文献求助10
3分钟前
平常安雁完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388415
求助须知:如何正确求助?哪些是违规求助? 3000764
关于积分的说明 8793601
捐赠科研通 2686868
什么是DOI,文献DOI怎么找? 1471874
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313