检出限
材料科学
电化学
电极
选择性
锆
催化作用
碳纤维
线性范围
化学工程
热液循环
纳米技术
复合数
化学
色谱法
复合材料
冶金
有机化学
工程类
物理化学
作者
Kaicha Chen,Hongli Zhao,Zhenxing Wang,Fangfang Zhou,Zehui Shi,Shida Cao,Minbo Lan
标识
DOI:10.1016/j.bios.2022.114431
摘要
The cardiac troponin I (cTnI) detection is increasingly significant given its promising value in the clinical acute myocardial infarction diagnosis. Here a sensitive sandwich-type cTnI electrochemical aptasensor was developed by using zirconium-carbon loaded with Au (Au/Zr-C) as electrode-modified material and snowflake-like PtCuNi catalyst as label material. The Au/Zr-C was prepared from a carbonation process and a reduction step. The PtCuNi was synthesized by a one-pot hydrothermal reaction. On the one hand, due to its many merits of large effective area, rich pores, high degree of graphitization, the assistance of Au, the Au/Zr-C exhibited remarkable electronic conductivity but low catalytical capacity, thus improving the electrochemical property but lowing the background signal of electrode. On the other hand, because of its accessible active sites of the special snowflake-like structure and the synergy of three elements, the PtCuNi catalyst presented excellent catalytic activity and improved stability compared to binary alloy. The recognition reactions were achieved by stepwise incubation of aptamer 1, cTnI, and aptamer 2-PtCuNi (denoted as Apt2-label) on the Au/Zr-C-modified electrode. The electrocatalytic signals of the immobilized Apt2-label towards the H2O2 reduction were recorded in all tests for cTnI analysis. Consequently, this cTnI aptasensor exhibited excellent performance involving a wide linear range of 100 ng mL-1 to 0.01 pg mL-1 with a detection limit of 1.24 × 10-3 pg mL-1 (S/N = 3), good selectivity, satisfying reproducibility, outstanding stability, and good recovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI