生物
单细胞分析
细胞
电池类型
计算生物学
单细胞测序
肿瘤细胞
细胞生物学
遗传学
表型
基因
癌症研究
外显子组测序
作者
Jan Dohmen,Artem Baranovskii,Jonathan Ronen,Bora Uyar,Vedran Franke,Altuna Akalin
出处
期刊:Genome Biology
[Springer Nature]
日期:2022-05-30
卷期号:23 (1)
被引量:26
标识
DOI:10.1186/s13059-022-02683-1
摘要
Tumors are complex tissues of cancerous cells surrounded by a heterogeneous cellular microenvironment with which they interact. Single-cell sequencing enables molecular characterization of single cells within the tumor. However, cell annotation-the assignment of cell type or cell state to each sequenced cell-is a challenge, especially identifying tumor cells within single-cell or spatial sequencing experiments. Here, we propose ikarus, a machine learning pipeline aimed at distinguishing tumor cells from normal cells at the single-cell level. We test ikarus on multiple single-cell datasets, showing that it achieves high sensitivity and specificity in multiple experimental contexts.
科研通智能强力驱动
Strongly Powered by AbleSci AI