Estimation of volume resources for planted forests using an advanced LiDAR and hyperspectral remote sensing

激光雷达 随机森林 高光谱成像 环境科学 遥感 体积热力学 回归 多元统计 数学 统计 计算机科学 地理 人工智能 量子力学 物理
作者
Kai Zhou,Lin Cao,Hao Liu,Zhengnan Zhang,Guibin Wang,Fuliang Cao
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:185: 106485-106485 被引量:13
标识
DOI:10.1016/j.resconrec.2022.106485
摘要

Planted forests play a key role in alleviating the stress of harvesting woods and carbon emission on natural forests. Accurate estimation of forest volume resources in planted forests is crucial for balancing relationships between ecological benefits from timber production and ecological benefits from biomass energy. In this study, we explored the use of spectral indices (SIs) and wavelet features (WFs) derived from hyperspectral imaging (HSI) data, as well as Light Detection And Ranging (LiDAR) metrics, with three multivariate regression methods for estimating volume resources in subtropical forests. The results showed that using combined LiDAR and HSI metrics generally outperformed LiDAR-only models. HSI metrics exhibited stronger relationships with volume in lower volume plots (volume < 320 m3/ha) but had saturation problem in higher volume plots, which could be well alleviated by LiDAR metrics. Specifically, coupling WFs and SIs as HSI metrics can further reinforce the synergetic use of LiDAR and HSI metrics, especially with the approach of backward elimination. In comparing three regression methods, Gaussian Processes Regression models (CV-R2 = 0.87, rRMSE = 16.12% for the best model) mostly outperformed Partial Linear Squares Regression and Random Forest regression models. The common important LiDAR metrics for three regression methods were height-related (H50) and density-related (D3 and D9) metrics, while the common optimal spectral metrics (WF615, 2, WF685, 5 and REIP) were related to the chlorophyll absorption features. These findings demonstrated the significance of the wavelet approach in strengthening the synergetic use of LiDAR and HSI metrics for enhancing forest parameter estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定可乐完成签到,获得积分10
刚刚
overmind发布了新的文献求助20
刚刚
1秒前
2秒前
3秒前
狂妄冰戟发布了新的文献求助10
3秒前
4秒前
5秒前
所所应助奶昔采纳,获得10
6秒前
英吉利25发布了新的文献求助10
7秒前
LVMIN完成签到,获得积分10
8秒前
浅忆发布了新的文献求助10
8秒前
9秒前
9秒前
11秒前
bkagyin应助overmind采纳,获得10
11秒前
wadihjasifh完成签到,获得积分10
11秒前
赘婿应助sunqian采纳,获得10
15秒前
魏头头完成签到 ,获得积分10
15秒前
火桑花发布了新的文献求助10
16秒前
Akim应助cmx采纳,获得10
17秒前
WC241002292完成签到,获得积分10
18秒前
颜倾完成签到,获得积分10
19秒前
20秒前
xkm完成签到,获得积分10
21秒前
hang完成签到,获得积分10
22秒前
江沉晚吟完成签到 ,获得积分10
22秒前
Hello应助狂妄冰戟采纳,获得10
22秒前
23秒前
浮游应助星辰坠于海采纳,获得10
24秒前
24秒前
Jasper应助会飞的史迪奇采纳,获得10
25秒前
量子星尘发布了新的文献求助10
25秒前
勤劳寒烟完成签到,获得积分10
26秒前
lepus发布了新的文献求助10
26秒前
yznfly举报上海材料研一求助涉嫌违规
26秒前
欣喜寄文发布了新的文献求助10
27秒前
28秒前
28秒前
xnz完成签到,获得积分20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460885
求助须知:如何正确求助?哪些是违规求助? 4565924
关于积分的说明 14302173
捐赠科研通 4491506
什么是DOI,文献DOI怎么找? 2460346
邀请新用户注册赠送积分活动 1449679
关于科研通互助平台的介绍 1425492