Estimation of volume resources for planted forests using an advanced LiDAR and hyperspectral remote sensing

激光雷达 随机森林 高光谱成像 环境科学 遥感 体积热力学 回归 多元统计 数学 统计 计算机科学 地理 人工智能 量子力学 物理
作者
Kai Zhou,Lin Cao,Hao Liu,Zhengnan Zhang,Guibin Wang,Fuliang Cao
出处
期刊:Resources Conservation and Recycling [Elsevier BV]
卷期号:185: 106485-106485 被引量:13
标识
DOI:10.1016/j.resconrec.2022.106485
摘要

Planted forests play a key role in alleviating the stress of harvesting woods and carbon emission on natural forests. Accurate estimation of forest volume resources in planted forests is crucial for balancing relationships between ecological benefits from timber production and ecological benefits from biomass energy. In this study, we explored the use of spectral indices (SIs) and wavelet features (WFs) derived from hyperspectral imaging (HSI) data, as well as Light Detection And Ranging (LiDAR) metrics, with three multivariate regression methods for estimating volume resources in subtropical forests. The results showed that using combined LiDAR and HSI metrics generally outperformed LiDAR-only models. HSI metrics exhibited stronger relationships with volume in lower volume plots (volume < 320 m3/ha) but had saturation problem in higher volume plots, which could be well alleviated by LiDAR metrics. Specifically, coupling WFs and SIs as HSI metrics can further reinforce the synergetic use of LiDAR and HSI metrics, especially with the approach of backward elimination. In comparing three regression methods, Gaussian Processes Regression models (CV-R2 = 0.87, rRMSE = 16.12% for the best model) mostly outperformed Partial Linear Squares Regression and Random Forest regression models. The common important LiDAR metrics for three regression methods were height-related (H50) and density-related (D3 and D9) metrics, while the common optimal spectral metrics (WF615, 2, WF685, 5 and REIP) were related to the chlorophyll absorption features. These findings demonstrated the significance of the wavelet approach in strengthening the synergetic use of LiDAR and HSI metrics for enhancing forest parameter estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
醋溜爆肚儿完成签到,获得积分10
2秒前
x5kyi发布了新的文献求助10
6秒前
科研通AI5应助健壮不斜采纳,获得10
6秒前
zombie完成签到,获得积分10
7秒前
7秒前
科研通AI5应助Gc采纳,获得30
7秒前
科研废物完成签到,获得积分10
7秒前
zhao完成签到,获得积分20
10秒前
脑洞疼应助YY采纳,获得10
10秒前
美丽梦秋完成签到,获得积分10
11秒前
努力熊熊完成签到,获得积分10
11秒前
科研大王发布了新的文献求助10
11秒前
12秒前
武勇发布了新的文献求助10
12秒前
Wang完成签到 ,获得积分10
12秒前
丘比特应助TianY天翊采纳,获得10
16秒前
科研通AI2S应助愉快的念文采纳,获得10
16秒前
16秒前
18秒前
星光发布了新的文献求助10
20秒前
23秒前
白日焰火完成签到 ,获得积分10
25秒前
完美世界应助Lis采纳,获得10
25秒前
卓惜筠完成签到,获得积分10
25秒前
JamesPei应助ziying126采纳,获得10
25秒前
27秒前
MeiyanZou完成签到 ,获得积分10
28秒前
bettersy完成签到,获得积分10
29秒前
29秒前
29秒前
风语发布了新的文献求助10
31秒前
Lis完成签到,获得积分10
31秒前
31秒前
天天快乐应助猪猪hero采纳,获得10
31秒前
32秒前
33秒前
min发布了新的文献求助10
34秒前
34秒前
虚幻的安柏完成签到,获得积分10
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740023
求助须知:如何正确求助?哪些是违规求助? 3283017
关于积分的说明 10033303
捐赠科研通 2999877
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783395
科研通“疑难数据库(出版商)”最低求助积分说明 750356