Estimation of volume resources for planted forests using an advanced LiDAR and hyperspectral remote sensing

激光雷达 随机森林 高光谱成像 环境科学 遥感 体积热力学 回归 多元统计 数学 统计 计算机科学 地理 人工智能 量子力学 物理
作者
Kai Zhou,Lin Cao,Hao Liu,Zhengnan Zhang,Guibin Wang,Fuliang Cao
出处
期刊:Resources Conservation and Recycling [Elsevier BV]
卷期号:185: 106485-106485 被引量:13
标识
DOI:10.1016/j.resconrec.2022.106485
摘要

Planted forests play a key role in alleviating the stress of harvesting woods and carbon emission on natural forests. Accurate estimation of forest volume resources in planted forests is crucial for balancing relationships between ecological benefits from timber production and ecological benefits from biomass energy. In this study, we explored the use of spectral indices (SIs) and wavelet features (WFs) derived from hyperspectral imaging (HSI) data, as well as Light Detection And Ranging (LiDAR) metrics, with three multivariate regression methods for estimating volume resources in subtropical forests. The results showed that using combined LiDAR and HSI metrics generally outperformed LiDAR-only models. HSI metrics exhibited stronger relationships with volume in lower volume plots (volume < 320 m3/ha) but had saturation problem in higher volume plots, which could be well alleviated by LiDAR metrics. Specifically, coupling WFs and SIs as HSI metrics can further reinforce the synergetic use of LiDAR and HSI metrics, especially with the approach of backward elimination. In comparing three regression methods, Gaussian Processes Regression models (CV-R2 = 0.87, rRMSE = 16.12% for the best model) mostly outperformed Partial Linear Squares Regression and Random Forest regression models. The common important LiDAR metrics for three regression methods were height-related (H50) and density-related (D3 and D9) metrics, while the common optimal spectral metrics (WF615, 2, WF685, 5 and REIP) were related to the chlorophyll absorption features. These findings demonstrated the significance of the wavelet approach in strengthening the synergetic use of LiDAR and HSI metrics for enhancing forest parameter estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
goosnake发布了新的文献求助10
1秒前
爆米花应助一匹野马采纳,获得10
1秒前
在水一方应助yyyq采纳,获得10
1秒前
昏睡的蟠桃给尽如的求助进行了留言
3秒前
yar应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
bkagyin应助weijie采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
芝麻糊应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
qin希望应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
6秒前
芝麻糊应助科研通管家采纳,获得10
6秒前
科研助手6应助科研通管家采纳,获得10
6秒前
6秒前
qin希望应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小猪坨完成签到,获得积分10
6秒前
6秒前
芝麻糊应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得30
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
科研助手6应助科研通管家采纳,获得30
7秒前
7秒前
AAACharlie应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014