Estimation of volume resources for planted forests using an advanced LiDAR and hyperspectral remote sensing

激光雷达 随机森林 高光谱成像 环境科学 遥感 体积热力学 回归 多元统计 数学 统计 计算机科学 地理 人工智能 量子力学 物理
作者
Kai Zhou,Lin Cao,Hao Liu,Zhengnan Zhang,Guibin Wang,Fuliang Cao
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:185: 106485-106485 被引量:13
标识
DOI:10.1016/j.resconrec.2022.106485
摘要

Planted forests play a key role in alleviating the stress of harvesting woods and carbon emission on natural forests. Accurate estimation of forest volume resources in planted forests is crucial for balancing relationships between ecological benefits from timber production and ecological benefits from biomass energy. In this study, we explored the use of spectral indices (SIs) and wavelet features (WFs) derived from hyperspectral imaging (HSI) data, as well as Light Detection And Ranging (LiDAR) metrics, with three multivariate regression methods for estimating volume resources in subtropical forests. The results showed that using combined LiDAR and HSI metrics generally outperformed LiDAR-only models. HSI metrics exhibited stronger relationships with volume in lower volume plots (volume < 320 m3/ha) but had saturation problem in higher volume plots, which could be well alleviated by LiDAR metrics. Specifically, coupling WFs and SIs as HSI metrics can further reinforce the synergetic use of LiDAR and HSI metrics, especially with the approach of backward elimination. In comparing three regression methods, Gaussian Processes Regression models (CV-R2 = 0.87, rRMSE = 16.12% for the best model) mostly outperformed Partial Linear Squares Regression and Random Forest regression models. The common important LiDAR metrics for three regression methods were height-related (H50) and density-related (D3 and D9) metrics, while the common optimal spectral metrics (WF615, 2, WF685, 5 and REIP) were related to the chlorophyll absorption features. These findings demonstrated the significance of the wavelet approach in strengthening the synergetic use of LiDAR and HSI metrics for enhancing forest parameter estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨杨完成签到,获得积分10
1秒前
1秒前
小明发布了新的文献求助10
1秒前
如意的梦秋完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
榴莲完成签到,获得积分10
4秒前
情怀应助阳光采纳,获得10
4秒前
orixero应助阳光采纳,获得10
4秒前
彭于晏应助阳光采纳,获得10
4秒前
科研通AI2S应助阳光采纳,获得10
4秒前
科目三应助阳光采纳,获得10
4秒前
丘比特应助阳光采纳,获得10
4秒前
无花果应助阳光采纳,获得10
4秒前
Orange应助阳光采纳,获得10
5秒前
脑洞疼应助阳光采纳,获得10
5秒前
我是老大应助阳光采纳,获得10
5秒前
5秒前
6秒前
Jane发布了新的文献求助10
7秒前
昴星引路完成签到 ,获得积分10
8秒前
dwls应助周周采纳,获得10
9秒前
9秒前
现实的大白完成签到 ,获得积分10
9秒前
9秒前
123发布了新的文献求助10
9秒前
今后应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
ceeray23应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得30
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
用头打碟发布了新的文献求助10
11秒前
毛豆应助科研通管家采纳,获得10
11秒前
江峰应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得30
11秒前
11秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444074
求助须知:如何正确求助?哪些是违规求助? 3040086
关于积分的说明 8980149
捐赠科研通 2728773
什么是DOI,文献DOI怎么找? 1496652
科研通“疑难数据库(出版商)”最低求助积分说明 691803
邀请新用户注册赠送积分活动 689384