Estimation of volume resources for planted forests using an advanced LiDAR and hyperspectral remote sensing

激光雷达 随机森林 高光谱成像 环境科学 遥感 体积热力学 回归 多元统计 数学 统计 计算机科学 地理 人工智能 量子力学 物理
作者
Kai Zhou,Lin Cao,Hao Liu,Zhengnan Zhang,Guibin Wang,Fuliang Cao
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:185: 106485-106485 被引量:13
标识
DOI:10.1016/j.resconrec.2022.106485
摘要

Planted forests play a key role in alleviating the stress of harvesting woods and carbon emission on natural forests. Accurate estimation of forest volume resources in planted forests is crucial for balancing relationships between ecological benefits from timber production and ecological benefits from biomass energy. In this study, we explored the use of spectral indices (SIs) and wavelet features (WFs) derived from hyperspectral imaging (HSI) data, as well as Light Detection And Ranging (LiDAR) metrics, with three multivariate regression methods for estimating volume resources in subtropical forests. The results showed that using combined LiDAR and HSI metrics generally outperformed LiDAR-only models. HSI metrics exhibited stronger relationships with volume in lower volume plots (volume < 320 m3/ha) but had saturation problem in higher volume plots, which could be well alleviated by LiDAR metrics. Specifically, coupling WFs and SIs as HSI metrics can further reinforce the synergetic use of LiDAR and HSI metrics, especially with the approach of backward elimination. In comparing three regression methods, Gaussian Processes Regression models (CV-R2 = 0.87, rRMSE = 16.12% for the best model) mostly outperformed Partial Linear Squares Regression and Random Forest regression models. The common important LiDAR metrics for three regression methods were height-related (H50) and density-related (D3 and D9) metrics, while the common optimal spectral metrics (WF615, 2, WF685, 5 and REIP) were related to the chlorophyll absorption features. These findings demonstrated the significance of the wavelet approach in strengthening the synergetic use of LiDAR and HSI metrics for enhancing forest parameter estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助矿泉水采纳,获得10
1秒前
小爽完成签到,获得积分10
1秒前
1秒前
逢春完成签到,获得积分10
1秒前
哈尼完成签到,获得积分10
1秒前
荡秋千的猴子完成签到,获得积分10
1秒前
浮名半生完成签到,获得积分10
2秒前
edtaa完成签到 ,获得积分10
2秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
zho应助科研通管家采纳,获得10
3秒前
迟大猫应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Agernon应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
俊藏星河发布了新的文献求助10
4秒前
丹布里发布了新的文献求助10
5秒前
小胡完成签到,获得积分10
5秒前
TTT发布了新的文献求助10
5秒前
6秒前
6秒前
到江南散步完成签到,获得积分10
6秒前
云云完成签到,获得积分10
7秒前
个性的德天完成签到,获得积分10
7秒前
充电宝应助interest-li采纳,获得10
7秒前
8秒前
毕个业完成签到 ,获得积分10
8秒前
诚心的箴完成签到,获得积分10
9秒前
addi111完成签到,获得积分10
9秒前
2024020847完成签到,获得积分10
9秒前
芝麻糊发布了新的文献求助10
10秒前
爱静静应助赵文若采纳,获得10
10秒前
我根本没长尾巴完成签到,获得积分10
10秒前
德行天下完成签到,获得积分10
11秒前
开朗可行发布了新的文献求助10
11秒前
12秒前
风信子完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912