Deep Learning-Enhanced Parallel Imaging and Simultaneous Multislice Acceleration Reconstruction in Knee MRI

多层 磁共振成像 图像质量 核医学 医学 加速度 膝关节 计算机科学 人工智能 放射科 外科 物理 图像(数学) 经典力学
作者
MinWoo Kim,Sangmin Lee,Chankue Park,Dongeon Lee,Kang Soo Kim,Hee Seok Jeong,Shin-Young Kim,Min-Hyeok Choi,Dominik Nickel
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (12): 826-833 被引量:38
标识
DOI:10.1097/rli.0000000000000900
摘要

This study aimed to examine various combinations of parallel imaging (PI) and simultaneous multislice (SMS) acceleration imaging using deep learning (DL)-enhanced and conventional reconstruction. The study also aimed at comparing the diagnostic performance of the various combinations in internal knee derangement and provided a quantitative evaluation of image sharpness and noise using edge rise distance (ERD) and noise power (NP), respectively.The data from adult patients who underwent knee magnetic resonance imaging using various DL-enhanced acquisitions between June 2021 and January 2022 were retrospectively analyzed. The participants underwent conventional 2-fold PI and DL protocols with 4- to 8-fold acceleration imaging (P2S2 [2-fold PI with 2-fold SMS], P3S2, and P4S2). Three readers evaluated the internal knee derangement and the overall image quality. The diagnostic performance was calculated using consensus reading as a standard reference, and we conducted comparative evaluations. We calculated the ERD and NP for quantitative evaluations of image sharpness and noise, respectively. Interreader and intermethod agreements were calculated using Fleiss κ.A total of 33 patients (mean age, 49 ± 19 years; 20 women) were included in this study. The diagnostic performance for internal knee derangement and the overall image quality were similar among the evaluated protocols. The NP values were significantly lower using the DL protocols than with conventional imaging ( P < 0.001), whereas the ERD values were similar among these methods ( P > 0.12). Interreader and intermethod agreements were moderate-to-excellent (κ = 0.574-0.838) and good-to-excellent (κ = 0.755-1.000), respectively. In addition, the mean acquisition time was reduced by 47% when using DL with P2S2, by 62% with P3S2, and by 71% with P4S2, compared with conventional P2 imaging (2 minutes and 55 seconds).The combined use of DL-enhanced 8-fold acceleration imaging (4-fold PI with 2-fold SMS) showed comparable performance with conventional 2-fold PI for the evaluation of internal knee derangement, with a 71% reduction in acquisition time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研究生完成签到 ,获得积分10
4秒前
浮游应助xh采纳,获得10
5秒前
中原第一深情完成签到,获得积分10
6秒前
6秒前
8秒前
海洋球完成签到 ,获得积分10
10秒前
呆萌安萱完成签到,获得积分10
11秒前
她的城完成签到,获得积分0
12秒前
13秒前
研友_ZG4ml8完成签到 ,获得积分10
13秒前
zrrr完成签到 ,获得积分10
14秒前
呆萌安萱发布了新的文献求助10
15秒前
我是老大应助小Y采纳,获得10
17秒前
Youth完成签到 ,获得积分20
20秒前
FCL完成签到,获得积分10
23秒前
小蘑菇应助飞丹采纳,获得10
25秒前
25秒前
科研通AI2S应助YOLO采纳,获得10
26秒前
十月天秤完成签到,获得积分10
30秒前
浮游应助小萝卜123采纳,获得10
31秒前
overThat完成签到,获得积分10
34秒前
35秒前
36秒前
Akim应助史念薇采纳,获得10
37秒前
来了来了完成签到 ,获得积分10
39秒前
红毛兔完成签到 ,获得积分10
39秒前
岁月如歌完成签到 ,获得积分0
40秒前
wao完成签到 ,获得积分10
40秒前
41秒前
飞丹发布了新的文献求助10
42秒前
寒冷的月亮完成签到,获得积分10
44秒前
研友_ndvWy8完成签到,获得积分10
46秒前
wxxz完成签到,获得积分10
47秒前
Yina完成签到 ,获得积分10
47秒前
飞丹完成签到,获得积分10
50秒前
50秒前
Jane完成签到,获得积分10
51秒前
雪白书南完成签到 ,获得积分10
52秒前
科研通AI2S应助xh采纳,获得10
54秒前
小Y发布了新的文献求助10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315270
求助须知:如何正确求助?哪些是违规求助? 4457945
关于积分的说明 13868470
捐赠科研通 4347468
什么是DOI,文献DOI怎么找? 2387790
邀请新用户注册赠送积分活动 1381932
关于科研通互助平台的介绍 1351243