作者
Wei Shan,Chengcheng Zhang,Ying Guo,Lisha Qiu
摘要
Under the influence of climate change and human activities, the southern boundary of the permafrost region in Northeast China, which is located at the southern edge of the permafrost area of Eurasia, has moved north, the surface temperature has increased, and the thickness of the frozen layer has decreased. At present, there is a lack of classification standards or a map of the thermal state of permafrost that can reflect the dynamic change characteristics of permafrost in Northeast China. A vegetation impact factor consisting of normalized difference vegetation index and forest canopy closure was introduced into MODIS LST products, in order to improve the applicability of products in Northeast China. Based on the improved MODIS LST data, this study analyzed the distribution and change of the mean annual surface temperature and the surface frost number (SFnc) from 2003 to 2019. SFnc was used as the standard to classify the thermal state of permafrost, and a map of the thermal state distribution and changes of permafrost in Northeast China, with a spatial resolution of 1 km, was produced. Compared with the observation data of meteorological stations and field monitoring data, the reliability of classification results was nearly 95%. The map showed that there was no area of extremely stable permafrost (SFnc ≥ 0.667), the area of stable permafrost (0.55 ≤ SFnc< 0.667) changed from 14.9 × 104 km2 to 6.5 × 104 km2, the SFnc reduced from 0.564 to 0.557, the area of semi-stable permafrost (0.51 < SFnc < 0.55) changed from 17.68 × 104 km2 to 17.77 × 104 km2, the SFNc reduced from 0.529 to 0.528, and the area of transitional or unstable permafrost (0.49 ≤ SFnc ≤ 0.51) changed from 8.67 × 104 km2 to 9.56 × 104 km2. The thermal state of permafrost decreased and the distribution of stable permafrost shrank, due to continuous rising air temperature. The overall change characteristics of the thermal state distribution of permafrost were that the southern boundary of the permafrost region moved northward, the regional permafrost thermal state decreased, and there was an increased region of semi-stable, transitional or unstable permafrost from the frozen soil thawed at the edge of the permafrost region with higher stability. The permafrost region in Northeast China has lush vegetation, and the continuous degradation of permafrost will change the vegetation growth environment and affect the global carbon cycle process. This work will provide important data support for climate change feedback, natural disaster process research, and an early warning and prevention of terrestrial ecosystem response in the permafrost region of Eurasia.