萧条(经济学)
计算机科学
基线(sea)
人工智能
机器学习
心理学
海洋学
经济
宏观经济学
地质学
作者
Jeewoo Yoon,Chaewon Kang,Seungbae Kim,Jinyoung Han
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2022-06-28
卷期号:36 (11): 12226-12234
被引量:34
标识
DOI:10.1609/aaai.v36i11.21483
摘要
Detecting depression based on non-verbal behaviors has received great attention. However, most prior work on detecting depression mainly focused on detecting depressed individuals in laboratory settings, which are difficult to be generalized in practice. In addition, little attention has been paid to analyzing the non-verbal behaviors of depressed individuals in the wild. Therefore, in this paper, we present a multimodal depression dataset, D-Vlog, which consists of 961 vlogs (i.e., around 160 hours) collected from YouTube, which can be utilized in developing depression detection models based on the non-verbal behavior of individuals in real-world scenario. We develop a multimodal deep learning model that uses acoustic and visual features extracted from collected data to detect depression. Our proposed model employs the cross-attention mechanism to effectively capture the relationship across acoustic and visual features, and generates useful multimodal representations for depression detection. The extensive experimental results demonstrate that the proposed model significantly outperforms other baseline models. We believe our dataset and the proposed model are useful for analyzing and detecting depressed individuals based on non-verbal behavior.
科研通智能强力驱动
Strongly Powered by AbleSci AI