Integration of multidimensional splicing data and GWAS summary statistics for risk gene discovery

全基因组关联研究 生物 计算生物学 RNA剪接 遗传关联 选择性拼接 遗传学 特质 基因 基因型 计算机科学 单核苷酸多态性 核糖核酸 信使核糖核酸 程序设计语言
作者
Ying Ji,Qiang Wei,Rui Chen,Quan Wang,Ran Tao,Bingshan Li
出处
期刊:PLOS Genetics [Public Library of Science]
卷期号:18 (6): e1009814-e1009814 被引量:1
标识
DOI:10.1371/journal.pgen.1009814
摘要

A common strategy for the functional interpretation of genome-wide association study (GWAS) findings has been the integrative analysis of GWAS and expression data. Using this strategy, many association methods (e.g., PrediXcan and FUSION) have been successful in identifying trait-associated genes via mediating effects on RNA expression. However, these approaches often ignore the effects of splicing, which can carry as much disease risk as expression. Compared to expression data, one challenge to detect associations using splicing data is the large multiple testing burden due to multidimensional splicing events within genes. Here, we introduce a multidimensional splicing gene (MSG) approach, which consists of two stages: 1) we use sparse canonical correlation analysis (sCCA) to construct latent canonical vectors (CVs) by identifying sparse linear combinations of genetic variants and splicing events that are maximally correlated with each other; and 2) we test for the association between the genetically regulated splicing CVs and the trait of interest using GWAS summary statistics. Simulations show that MSG has proper type I error control and substantial power gains over existing multidimensional expression analysis methods (i.e., S-MultiXcan, UTMOST, and sCCA+ACAT) under diverse scenarios. When applied to the Genotype-Tissue Expression Project data and GWAS summary statistics of 14 complex human traits, MSG identified on average 83%, 115%, and 223% more significant genes than sCCA+ACAT, S-MultiXcan, and UTMOST, respectively. We highlight MSG’s applications to Alzheimer’s disease, low-density lipoprotein cholesterol, and schizophrenia, and found that the majority of MSG-identified genes would have been missed from expression-based analyses. Our results demonstrate that aggregating splicing data through MSG can improve power in identifying gene-trait associations and help better understand the genetic risk of complex traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
二三发布了新的文献求助10
1秒前
1秒前
科研通AI6应助666采纳,获得10
2秒前
zhou完成签到,获得积分10
2秒前
彭于晏应助yangxt-iga采纳,获得10
2秒前
di完成签到,获得积分10
3秒前
3秒前
zzulyy发布了新的文献求助10
3秒前
whoami完成签到,获得积分10
3秒前
玛卡巴卡发布了新的文献求助10
4秒前
Wang发布了新的文献求助10
4秒前
4秒前
5秒前
小古发布了新的文献求助10
5秒前
tianyue发布了新的文献求助10
6秒前
Qi齐发布了新的文献求助10
6秒前
6秒前
8R60d8应助小超人采纳,获得10
7秒前
JJ完成签到,获得积分10
7秒前
8秒前
丘比特应助1551采纳,获得10
8秒前
9秒前
Ramy发布了新的文献求助10
9秒前
TIAN完成签到,获得积分20
9秒前
10秒前
任浩发布了新的文献求助10
10秒前
10秒前
直率如凡发布了新的文献求助10
11秒前
路老师完成签到,获得积分10
11秒前
刘浩然发布了新的文献求助10
12秒前
哈机密南北撸多完成签到,获得积分10
13秒前
13秒前
13秒前
哎嘿发布了新的文献求助10
14秒前
NiLou发布了新的文献求助10
14秒前
丘比特应助cc采纳,获得10
14秒前
快逃完成签到,获得积分10
14秒前
di发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708