清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integration of multidimensional splicing data and GWAS summary statistics for risk gene discovery

全基因组关联研究 生物 计算生物学 RNA剪接 遗传关联 选择性拼接 遗传学 特质 基因 基因型 计算机科学 单核苷酸多态性 核糖核酸 信使核糖核酸 程序设计语言
作者
Ying Ji,Qiang Wei,Rui Chen,Quan Wang,Ran Tao,Bingshan Li
出处
期刊:PLOS Genetics [Public Library of Science]
卷期号:18 (6): e1009814-e1009814 被引量:1
标识
DOI:10.1371/journal.pgen.1009814
摘要

A common strategy for the functional interpretation of genome-wide association study (GWAS) findings has been the integrative analysis of GWAS and expression data. Using this strategy, many association methods (e.g., PrediXcan and FUSION) have been successful in identifying trait-associated genes via mediating effects on RNA expression. However, these approaches often ignore the effects of splicing, which can carry as much disease risk as expression. Compared to expression data, one challenge to detect associations using splicing data is the large multiple testing burden due to multidimensional splicing events within genes. Here, we introduce a multidimensional splicing gene (MSG) approach, which consists of two stages: 1) we use sparse canonical correlation analysis (sCCA) to construct latent canonical vectors (CVs) by identifying sparse linear combinations of genetic variants and splicing events that are maximally correlated with each other; and 2) we test for the association between the genetically regulated splicing CVs and the trait of interest using GWAS summary statistics. Simulations show that MSG has proper type I error control and substantial power gains over existing multidimensional expression analysis methods (i.e., S-MultiXcan, UTMOST, and sCCA+ACAT) under diverse scenarios. When applied to the Genotype-Tissue Expression Project data and GWAS summary statistics of 14 complex human traits, MSG identified on average 83%, 115%, and 223% more significant genes than sCCA+ACAT, S-MultiXcan, and UTMOST, respectively. We highlight MSG’s applications to Alzheimer’s disease, low-density lipoprotein cholesterol, and schizophrenia, and found that the majority of MSG-identified genes would have been missed from expression-based analyses. Our results demonstrate that aggregating splicing data through MSG can improve power in identifying gene-trait associations and help better understand the genetic risk of complex traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
as9988776654完成签到 ,获得积分10
2秒前
默默雪旋完成签到 ,获得积分10
7秒前
40秒前
chenyue233完成签到,获得积分10
40秒前
56秒前
量子星尘发布了新的文献求助50
1分钟前
花园里的蒜完成签到 ,获得积分0
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
loen完成签到,获得积分10
1分钟前
多亿点完成签到 ,获得积分10
2分钟前
shuang完成签到 ,获得积分10
2分钟前
Ava应助michael_suo采纳,获得10
2分钟前
2分钟前
husi发布了新的文献求助10
2分钟前
2分钟前
husi完成签到 ,获得积分20
2分钟前
在水一方应助我爱读文献采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
michael_suo发布了新的文献求助10
3分钟前
michael_suo完成签到,获得积分10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
爱吃皮囊的大馋虫完成签到 ,获得积分10
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
馆长举报i beLIeVe求助涉嫌违规
4分钟前
迷茫的一代完成签到,获得积分10
4分钟前
馆长举报小黄瓜896求助涉嫌违规
4分钟前
馆长举报kkkkk求助涉嫌违规
4分钟前
超级兵12完成签到,获得积分10
4分钟前
程小柒完成签到 ,获得积分10
4分钟前
馆长举报Yoli求助涉嫌违规
4分钟前
馆长举报欢喜的海求助涉嫌违规
5分钟前
lei029发布了新的文献求助30
5分钟前
馆长举报耶耶耶y求助涉嫌违规
5分钟前
Wenjie_Xin完成签到,获得积分10
5分钟前
馆长举报友好慕卉求助涉嫌违规
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596533
求助须知:如何正确求助?哪些是违规求助? 4008426
关于积分的说明 12409207
捐赠科研通 3687443
什么是DOI,文献DOI怎么找? 2032420
邀请新用户注册赠送积分活动 1065646
科研通“疑难数据库(出版商)”最低求助积分说明 950967