Integration of multidimensional splicing data and GWAS summary statistics for risk gene discovery

全基因组关联研究 生物 计算生物学 RNA剪接 遗传关联 选择性拼接 遗传学 特质 基因 基因型 计算机科学 单核苷酸多态性 核糖核酸 信使核糖核酸 程序设计语言
作者
Ying Ji,Qiang Wei,Rui Chen,Quan Wang,Ran Tao,Bingshan Li
出处
期刊:PLOS Genetics [Public Library of Science]
卷期号:18 (6): e1009814-e1009814 被引量:1
标识
DOI:10.1371/journal.pgen.1009814
摘要

A common strategy for the functional interpretation of genome-wide association study (GWAS) findings has been the integrative analysis of GWAS and expression data. Using this strategy, many association methods (e.g., PrediXcan and FUSION) have been successful in identifying trait-associated genes via mediating effects on RNA expression. However, these approaches often ignore the effects of splicing, which can carry as much disease risk as expression. Compared to expression data, one challenge to detect associations using splicing data is the large multiple testing burden due to multidimensional splicing events within genes. Here, we introduce a multidimensional splicing gene (MSG) approach, which consists of two stages: 1) we use sparse canonical correlation analysis (sCCA) to construct latent canonical vectors (CVs) by identifying sparse linear combinations of genetic variants and splicing events that are maximally correlated with each other; and 2) we test for the association between the genetically regulated splicing CVs and the trait of interest using GWAS summary statistics. Simulations show that MSG has proper type I error control and substantial power gains over existing multidimensional expression analysis methods (i.e., S-MultiXcan, UTMOST, and sCCA+ACAT) under diverse scenarios. When applied to the Genotype-Tissue Expression Project data and GWAS summary statistics of 14 complex human traits, MSG identified on average 83%, 115%, and 223% more significant genes than sCCA+ACAT, S-MultiXcan, and UTMOST, respectively. We highlight MSG’s applications to Alzheimer’s disease, low-density lipoprotein cholesterol, and schizophrenia, and found that the majority of MSG-identified genes would have been missed from expression-based analyses. Our results demonstrate that aggregating splicing data through MSG can improve power in identifying gene-trait associations and help better understand the genetic risk of complex traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助隐形白亦采纳,获得10
刚刚
明亮的代桃完成签到,获得积分10
刚刚
烟花易冷发布了新的文献求助30
刚刚
上官若男应助舒适静丹采纳,获得10
刚刚
苦哈哈发布了新的文献求助10
1秒前
carter6713关注了科研通微信公众号
1秒前
卡卡西应助迷路胡萝卜采纳,获得30
2秒前
2秒前
夏定海完成签到,获得积分10
2秒前
4秒前
4秒前
韩hqf发布了新的文献求助10
4秒前
4秒前
5秒前
yuk完成签到,获得积分20
5秒前
5秒前
量子星尘发布了新的文献求助30
5秒前
小明明发布了新的文献求助10
5秒前
慕青应助chenjing采纳,获得10
5秒前
5秒前
傲娇黄豆完成签到,获得积分10
6秒前
小小完成签到,获得积分20
6秒前
张小咩咩完成签到 ,获得积分10
6秒前
7秒前
大气沛容完成签到,获得积分10
7秒前
okkkkkkkkkkkkkk完成签到,获得积分10
7秒前
谷大喵唔完成签到,获得积分20
7秒前
安静语堂发布了新的文献求助10
8秒前
科研通AI2S应助kryptonite采纳,获得10
8秒前
聪慧小霜应助kryptonite采纳,获得10
8秒前
科研通AI2S应助kryptonite采纳,获得10
8秒前
晚风完成签到,获得积分10
8秒前
123456发布了新的文献求助10
8秒前
顾矜应助kagami采纳,获得10
9秒前
朴素的水瑶关注了科研通微信公众号
9秒前
善良书蕾发布了新的文献求助10
10秒前
10秒前
10秒前
wanci应助lxcy0612采纳,获得10
10秒前
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059