Integration of multidimensional splicing data and GWAS summary statistics for risk gene discovery

全基因组关联研究 生物 计算生物学 RNA剪接 遗传关联 选择性拼接 遗传学 特质 基因 基因型 计算机科学 单核苷酸多态性 核糖核酸 信使核糖核酸 程序设计语言
作者
Ying Ji,Qiang Wei,Rui Chen,Quan Wang,Ran Tao,Bingshan Li
出处
期刊:PLOS Genetics 卷期号:18 (6): e1009814-e1009814 被引量:1
标识
DOI:10.1371/journal.pgen.1009814
摘要

A common strategy for the functional interpretation of genome-wide association study (GWAS) findings has been the integrative analysis of GWAS and expression data. Using this strategy, many association methods (e.g., PrediXcan and FUSION) have been successful in identifying trait-associated genes via mediating effects on RNA expression. However, these approaches often ignore the effects of splicing, which can carry as much disease risk as expression. Compared to expression data, one challenge to detect associations using splicing data is the large multiple testing burden due to multidimensional splicing events within genes. Here, we introduce a multidimensional splicing gene (MSG) approach, which consists of two stages: 1) we use sparse canonical correlation analysis (sCCA) to construct latent canonical vectors (CVs) by identifying sparse linear combinations of genetic variants and splicing events that are maximally correlated with each other; and 2) we test for the association between the genetically regulated splicing CVs and the trait of interest using GWAS summary statistics. Simulations show that MSG has proper type I error control and substantial power gains over existing multidimensional expression analysis methods (i.e., S-MultiXcan, UTMOST, and sCCA+ACAT) under diverse scenarios. When applied to the Genotype-Tissue Expression Project data and GWAS summary statistics of 14 complex human traits, MSG identified on average 83%, 115%, and 223% more significant genes than sCCA+ACAT, S-MultiXcan, and UTMOST, respectively. We highlight MSG’s applications to Alzheimer’s disease, low-density lipoprotein cholesterol, and schizophrenia, and found that the majority of MSG-identified genes would have been missed from expression-based analyses. Our results demonstrate that aggregating splicing data through MSG can improve power in identifying gene-trait associations and help better understand the genetic risk of complex traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
俊逸的若剑完成签到 ,获得积分10
2秒前
田様应助光亮的夜雪采纳,获得10
3秒前
5秒前
SYLH应助yjj6809采纳,获得10
6秒前
7秒前
情怀应助任性的皮卡丘采纳,获得10
8秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
沉寂的希望完成签到,获得积分20
10秒前
杳鸢应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
11秒前
坦率曼香发布了新的文献求助10
11秒前
杳鸢应助科研通管家采纳,获得10
11秒前
杳鸢应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
杳鸢应助科研通管家采纳,获得10
11秒前
11秒前
田様应助科研通管家采纳,获得30
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
今天吃什么完成签到 ,获得积分20
12秒前
科研通AI2S应助doctor163采纳,获得10
14秒前
miracle发布了新的文献求助10
14秒前
快乐白曼完成签到,获得积分10
14秒前
15秒前
梦_筱彩完成签到 ,获得积分10
17秒前
瘦瘦的寒珊完成签到 ,获得积分10
17秒前
ssss完成签到 ,获得积分10
18秒前
苏卿应助sensensmart采纳,获得10
19秒前
23秒前
24秒前
oydent完成签到,获得积分10
25秒前
调研昵称发布了新的文献求助10
27秒前
Neuro_dan完成签到,获得积分0
28秒前
大黄发布了新的文献求助10
29秒前
30秒前
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479504
求助须知:如何正确求助?哪些是违规求助? 3070099
关于积分的说明 9116702
捐赠科研通 2761842
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700982
科研通“疑难数据库(出版商)”最低求助积分说明 699985