Integration of multidimensional splicing data and GWAS summary statistics for risk gene discovery

全基因组关联研究 生物 计算生物学 RNA剪接 遗传关联 选择性拼接 遗传学 特质 基因 基因型 计算机科学 单核苷酸多态性 核糖核酸 信使核糖核酸 程序设计语言
作者
Ying Ji,Qiang Wei,Rui Chen,Quan Wang,Ran Tao,Bingshan Li
出处
期刊:PLOS Genetics 卷期号:18 (6): e1009814-e1009814 被引量:1
标识
DOI:10.1371/journal.pgen.1009814
摘要

A common strategy for the functional interpretation of genome-wide association study (GWAS) findings has been the integrative analysis of GWAS and expression data. Using this strategy, many association methods (e.g., PrediXcan and FUSION) have been successful in identifying trait-associated genes via mediating effects on RNA expression. However, these approaches often ignore the effects of splicing, which can carry as much disease risk as expression. Compared to expression data, one challenge to detect associations using splicing data is the large multiple testing burden due to multidimensional splicing events within genes. Here, we introduce a multidimensional splicing gene (MSG) approach, which consists of two stages: 1) we use sparse canonical correlation analysis (sCCA) to construct latent canonical vectors (CVs) by identifying sparse linear combinations of genetic variants and splicing events that are maximally correlated with each other; and 2) we test for the association between the genetically regulated splicing CVs and the trait of interest using GWAS summary statistics. Simulations show that MSG has proper type I error control and substantial power gains over existing multidimensional expression analysis methods (i.e., S-MultiXcan, UTMOST, and sCCA+ACAT) under diverse scenarios. When applied to the Genotype-Tissue Expression Project data and GWAS summary statistics of 14 complex human traits, MSG identified on average 83%, 115%, and 223% more significant genes than sCCA+ACAT, S-MultiXcan, and UTMOST, respectively. We highlight MSG’s applications to Alzheimer’s disease, low-density lipoprotein cholesterol, and schizophrenia, and found that the majority of MSG-identified genes would have been missed from expression-based analyses. Our results demonstrate that aggregating splicing data through MSG can improve power in identifying gene-trait associations and help better understand the genetic risk of complex traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煜晟完成签到 ,获得积分10
2秒前
fuyunyouzi发布了新的文献求助10
2秒前
GZX完成签到,获得积分10
4秒前
abbyi完成签到,获得积分10
4秒前
6秒前
brave heart完成签到,获得积分10
9秒前
tian完成签到,获得积分0
10秒前
13秒前
13秒前
爱笑花卷完成签到 ,获得积分10
14秒前
14秒前
平常的不评完成签到 ,获得积分10
15秒前
熬夜猫完成签到,获得积分10
20秒前
沉默烨霖发布了新的文献求助10
21秒前
认真写论文的小梁完成签到,获得积分10
23秒前
包容沛儿完成签到 ,获得积分10
26秒前
28秒前
28秒前
30秒前
小庸医完成签到 ,获得积分10
32秒前
Ran发布了新的文献求助10
34秒前
penglili发布了新的文献求助10
35秒前
zpy完成签到,获得积分10
35秒前
卡尔文完成签到,获得积分10
37秒前
37秒前
37秒前
38秒前
顾矜应助mushrooms119采纳,获得10
39秒前
科研通AI2S应助坎坷采纳,获得10
39秒前
40秒前
小忠完成签到 ,获得积分10
42秒前
dell发布了新的文献求助10
42秒前
张志远发布了新的文献求助10
42秒前
Ran发布了新的文献求助10
44秒前
清新的夜梦完成签到,获得积分10
46秒前
自由冰凡完成签到 ,获得积分10
46秒前
wyihao关注了科研通微信公众号
47秒前
默默雨灵发布了新的文献求助10
48秒前
49秒前
dell完成签到,获得积分10
49秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085924
求助须知:如何正确求助?哪些是违规求助? 2738890
关于积分的说明 7552090
捐赠科研通 2388595
什么是DOI,文献DOI怎么找? 1266658
科研通“疑难数据库(出版商)”最低求助积分说明 613539
版权声明 598591