亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integration of multidimensional splicing data and GWAS summary statistics for risk gene discovery

全基因组关联研究 生物 计算生物学 RNA剪接 遗传关联 选择性拼接 遗传学 特质 基因 基因型 计算机科学 单核苷酸多态性 核糖核酸 信使核糖核酸 程序设计语言
作者
Ying Ji,Qiang Wei,Rui Chen,Quan Wang,Ran Tao,Bingshan Li
出处
期刊:PLOS Genetics [Public Library of Science]
卷期号:18 (6): e1009814-e1009814 被引量:1
标识
DOI:10.1371/journal.pgen.1009814
摘要

A common strategy for the functional interpretation of genome-wide association study (GWAS) findings has been the integrative analysis of GWAS and expression data. Using this strategy, many association methods (e.g., PrediXcan and FUSION) have been successful in identifying trait-associated genes via mediating effects on RNA expression. However, these approaches often ignore the effects of splicing, which can carry as much disease risk as expression. Compared to expression data, one challenge to detect associations using splicing data is the large multiple testing burden due to multidimensional splicing events within genes. Here, we introduce a multidimensional splicing gene (MSG) approach, which consists of two stages: 1) we use sparse canonical correlation analysis (sCCA) to construct latent canonical vectors (CVs) by identifying sparse linear combinations of genetic variants and splicing events that are maximally correlated with each other; and 2) we test for the association between the genetically regulated splicing CVs and the trait of interest using GWAS summary statistics. Simulations show that MSG has proper type I error control and substantial power gains over existing multidimensional expression analysis methods (i.e., S-MultiXcan, UTMOST, and sCCA+ACAT) under diverse scenarios. When applied to the Genotype-Tissue Expression Project data and GWAS summary statistics of 14 complex human traits, MSG identified on average 83%, 115%, and 223% more significant genes than sCCA+ACAT, S-MultiXcan, and UTMOST, respectively. We highlight MSG’s applications to Alzheimer’s disease, low-density lipoprotein cholesterol, and schizophrenia, and found that the majority of MSG-identified genes would have been missed from expression-based analyses. Our results demonstrate that aggregating splicing data through MSG can improve power in identifying gene-trait associations and help better understand the genetic risk of complex traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙龙冲发布了新的文献求助10
2秒前
思源应助张桃李采纳,获得10
4秒前
10秒前
科研通AI6应助11112321321采纳,获得10
11秒前
11秒前
小马哥完成签到,获得积分10
14秒前
拉长的鹤完成签到,获得积分10
15秒前
田様应助四壁雪采纳,获得10
16秒前
刚子完成签到 ,获得积分0
18秒前
bkagyin应助爱听歌采白采纳,获得30
20秒前
CodeCraft应助杰杰采纳,获得10
21秒前
Chansue完成签到,获得积分20
23秒前
27秒前
聪明冰岚完成签到 ,获得积分10
27秒前
28秒前
spaceshark发布了新的文献求助30
29秒前
30秒前
杰杰发布了新的文献求助10
31秒前
wang完成签到 ,获得积分10
34秒前
yunshui发布了新的文献求助10
36秒前
想吃芝士荔枝烤鱼完成签到,获得积分10
38秒前
qi88完成签到 ,获得积分10
40秒前
大帅哥完成签到 ,获得积分10
41秒前
41秒前
四壁雪发布了新的文献求助10
48秒前
田様应助神勇的映真采纳,获得10
50秒前
NOTHING完成签到 ,获得积分10
51秒前
51秒前
iuun完成签到,获得积分10
54秒前
马到成功发布了新的文献求助10
56秒前
CodeCraft应助wuchang2617采纳,获得10
56秒前
59秒前
qingsyxuan完成签到,获得积分10
1分钟前
雷晨晨完成签到 ,获得积分10
1分钟前
苏澄完成签到,获得积分10
1分钟前
慕青应助fukase采纳,获得10
1分钟前
张桃李发布了新的文献求助10
1分钟前
打打应助Demon724采纳,获得10
1分钟前
酷酷画笔发布了新的文献求助10
1分钟前
无花果应助annis采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418216
求助须知:如何正确求助?哪些是违规求助? 4533911
关于积分的说明 14142813
捐赠科研通 4450174
什么是DOI,文献DOI怎么找? 2441118
邀请新用户注册赠送积分活动 1432858
关于科研通互助平台的介绍 1410079