已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a deep learning model for the histologic diagnosis of dysplasia in Barrett’s esophagus

巴雷特食管 发育不良 医学 过度诊断 食管 人工智能 放射科 病理 内科学 计算机科学 癌症 腺癌
作者
Shahriar Faghani,Don C. Codipilly,David F. Vogelsang,Mana Moassefi,Pouria Rouzrokh,Bardia Khosravi,Siddharth Agarwal,Lovekirat Dhaliwal,David A. Katzka,Catherine E. Hagen,Jason T. Lewis,Cadman L. Leggett,Bradley J. Erickson,Prasad G. Iyer
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:96 (6): 918-925.e3 被引量:28
标识
DOI:10.1016/j.gie.2022.06.013
摘要

The risk of progression in Barrett's esophagus (BE) increases with development of dysplasia. There is a critical need to improve the diagnosis of BE dysplasia, given substantial interobserver disagreement among expert pathologists and overdiagnosis of dysplasia by community pathologists. We developed a deep learning model to predict dysplasia grade on whole-slide imaging.We digitized nondysplastic BE (NDBE), low-grade dysplasia (LGD), and high-grade dysplasia (HGD) histology slides. Two expert pathologists confirmed all histology and digitally annotated areas of dysplasia. Training, validation, and test sets were created (by a random 70/20/10 split). We used an ensemble approach combining a "you only look once" model to identify regions of interest and histology class (NDBE, LGD, or HGD) followed by a ResNet101 model pretrained on ImageNet applied to the regions of interest. Diagnostic performance was determined for the whole slide.We included slides from 542 patients (164 NDBE, 226 LGD, and 152 HGD) yielding 8596 bounding boxes in the training set, 1946 bounding boxes in the validation set, and 840 boxes in the test set. When the ensemble model was used, sensitivity and specificity for LGD was 81.3% and 100%, respectively, and >90% for NDBE and HGD. The overall positive predictive value and sensitivity metric (calculated as F1 score) was .91 for NDBE, .90 for LGD, and 1.0 for HGD.We successfully trained and validated a deep learning model to accurately identify dysplasia on whole-slide images. This model can potentially help improve the histologic diagnosis of BE dysplasia and the appropriate application of endoscopic therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
kaka完成签到,获得积分0
4秒前
kaki发布了新的文献求助10
7秒前
10秒前
kingwill完成签到,获得积分0
11秒前
今天又学明白了完成签到 ,获得积分10
11秒前
MIMI完成签到,获得积分10
12秒前
haoran完成签到,获得积分20
14秒前
明昼完成签到,获得积分10
15秒前
kaki完成签到,获得积分20
15秒前
15秒前
Frozen发布了新的文献求助30
15秒前
MIMI发布了新的文献求助10
16秒前
牛牛完成签到 ,获得积分10
18秒前
土豆完成签到 ,获得积分10
19秒前
19秒前
杨凡完成签到,获得积分10
19秒前
shinn发布了新的文献求助30
20秒前
jagger完成签到,获得积分10
20秒前
小地蛋完成签到 ,获得积分10
21秒前
并肩于雪山之巅完成签到 ,获得积分10
23秒前
科目三应助xny采纳,获得10
24秒前
Frozen完成签到,获得积分10
24秒前
25秒前
务实青筠完成签到 ,获得积分10
29秒前
31秒前
斯文败类应助W~舞采纳,获得10
32秒前
shinn发布了新的文献求助10
34秒前
深情安青应助YSE采纳,获得10
35秒前
37秒前
39秒前
40秒前
顾矜应助网上飞采纳,获得10
42秒前
zzzy完成签到 ,获得积分10
44秒前
kelvin发布了新的文献求助50
44秒前
平淡的天思完成签到,获得积分10
44秒前
顺利墨镜发布了新的文献求助30
48秒前
燚y完成签到 ,获得积分20
51秒前
51秒前
敞敞亮亮完成签到 ,获得积分10
52秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513189
关于积分的说明 11166755
捐赠科研通 3248411
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629