Development of a deep learning model for the histologic diagnosis of dysplasia in Barrett’s esophagus

巴雷特食管 发育不良 医学 过度诊断 食管 人工智能 放射科 病理 内科学 计算机科学 癌症 腺癌
作者
Shahriar Faghani,Don C. Codipilly,David F. Vogelsang,Mana Moassefi,Pouria Rouzrokh,Bardia Khosravi,Siddharth Agarwal,Lovekirat Dhaliwal,David A. Katzka,Catherine E. Hagen,Jason T. Lewis,Cadman L. Leggett,Bradley J. Erickson,Prasad G. Iyer
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:96 (6): 918-925.e3 被引量:28
标识
DOI:10.1016/j.gie.2022.06.013
摘要

The risk of progression in Barrett's esophagus (BE) increases with development of dysplasia. There is a critical need to improve the diagnosis of BE dysplasia, given substantial interobserver disagreement among expert pathologists and overdiagnosis of dysplasia by community pathologists. We developed a deep learning model to predict dysplasia grade on whole-slide imaging.We digitized nondysplastic BE (NDBE), low-grade dysplasia (LGD), and high-grade dysplasia (HGD) histology slides. Two expert pathologists confirmed all histology and digitally annotated areas of dysplasia. Training, validation, and test sets were created (by a random 70/20/10 split). We used an ensemble approach combining a "you only look once" model to identify regions of interest and histology class (NDBE, LGD, or HGD) followed by a ResNet101 model pretrained on ImageNet applied to the regions of interest. Diagnostic performance was determined for the whole slide.We included slides from 542 patients (164 NDBE, 226 LGD, and 152 HGD) yielding 8596 bounding boxes in the training set, 1946 bounding boxes in the validation set, and 840 boxes in the test set. When the ensemble model was used, sensitivity and specificity for LGD was 81.3% and 100%, respectively, and >90% for NDBE and HGD. The overall positive predictive value and sensitivity metric (calculated as F1 score) was .91 for NDBE, .90 for LGD, and 1.0 for HGD.We successfully trained and validated a deep learning model to accurately identify dysplasia on whole-slide images. This model can potentially help improve the histologic diagnosis of BE dysplasia and the appropriate application of endoscopic therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cy完成签到 ,获得积分20
刚刚
刚刚
1秒前
黑大帅发布了新的文献求助10
1秒前
小Z发布了新的文献求助10
1秒前
蓝天发布了新的文献求助10
1秒前
orixero应助2240920060采纳,获得10
1秒前
燕天与完成签到,获得积分10
2秒前
Akim应助Snoopy采纳,获得10
2秒前
橘酥酥呀完成签到,获得积分20
2秒前
醋溜荧光大蒜完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
普鲁卡因发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助20
3秒前
倦梦还完成签到,获得积分10
3秒前
玻璃发布了新的文献求助10
3秒前
李健应助拾柒采纳,获得10
3秒前
lz发布了新的文献求助10
4秒前
normankasimodo完成签到,获得积分10
4秒前
wu完成签到,获得积分10
4秒前
郭勇慧完成签到,获得积分10
5秒前
163发布了新的文献求助10
5秒前
csq69发布了新的文献求助80
5秒前
5秒前
zjy发布了新的文献求助10
5秒前
Owen应助夏小胖采纳,获得10
5秒前
无私幻枫完成签到,获得积分10
5秒前
求助人员应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
求助人员应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
陈宇蛟完成签到,获得积分10
6秒前
Ll关闭了Ll文献求助
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034