Development of a deep learning model for the histologic diagnosis of dysplasia in Barrett’s esophagus

巴雷特食管 发育不良 医学 过度诊断 食管 人工智能 放射科 病理 内科学 计算机科学 癌症 腺癌
作者
Shahriar Faghani,Don C. Codipilly,David F. Vogelsang,Mana Moassefi,Pouria Rouzrokh,Bardia Khosravi,Siddharth Agarwal,Lovekirat Dhaliwal,David A. Katzka,Catherine E. Hagen,Jason T. Lewis,Cadman L. Leggett,Bradley J. Erickson,Prasad G. Iyer
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:96 (6): 918-925.e3 被引量:28
标识
DOI:10.1016/j.gie.2022.06.013
摘要

The risk of progression in Barrett's esophagus (BE) increases with development of dysplasia. There is a critical need to improve the diagnosis of BE dysplasia, given substantial interobserver disagreement among expert pathologists and overdiagnosis of dysplasia by community pathologists. We developed a deep learning model to predict dysplasia grade on whole-slide imaging.We digitized nondysplastic BE (NDBE), low-grade dysplasia (LGD), and high-grade dysplasia (HGD) histology slides. Two expert pathologists confirmed all histology and digitally annotated areas of dysplasia. Training, validation, and test sets were created (by a random 70/20/10 split). We used an ensemble approach combining a "you only look once" model to identify regions of interest and histology class (NDBE, LGD, or HGD) followed by a ResNet101 model pretrained on ImageNet applied to the regions of interest. Diagnostic performance was determined for the whole slide.We included slides from 542 patients (164 NDBE, 226 LGD, and 152 HGD) yielding 8596 bounding boxes in the training set, 1946 bounding boxes in the validation set, and 840 boxes in the test set. When the ensemble model was used, sensitivity and specificity for LGD was 81.3% and 100%, respectively, and >90% for NDBE and HGD. The overall positive predictive value and sensitivity metric (calculated as F1 score) was .91 for NDBE, .90 for LGD, and 1.0 for HGD.We successfully trained and validated a deep learning model to accurately identify dysplasia on whole-slide images. This model can potentially help improve the histologic diagnosis of BE dysplasia and the appropriate application of endoscopic therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏杨洋发布了新的文献求助10
刚刚
littlequiet发布了新的文献求助10
1秒前
臻灏发布了新的文献求助10
1秒前
情怀应助嘉佳采纳,获得10
1秒前
柯佳君完成签到,获得积分20
1秒前
Jeremy发布了新的文献求助10
2秒前
时行舒完成签到,获得积分10
2秒前
小何完成签到,获得积分10
2秒前
汉堡包应助务实的葵阴采纳,获得10
2秒前
2秒前
3秒前
我是嫩蝶完成签到,获得积分10
3秒前
3秒前
木子Lee完成签到,获得积分10
3秒前
大乐发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
筷子吃不了面完成签到,获得积分10
6秒前
桐桐应助lcj1014采纳,获得10
6秒前
jasontian1990发布了新的文献求助10
6秒前
6秒前
妮妮发布了新的文献求助30
6秒前
Jasper应助littlequiet采纳,获得10
7秒前
7秒前
时行舒发布了新的文献求助10
7秒前
桐桐应助123采纳,获得10
8秒前
8秒前
8秒前
希望天下0贩的0应助liu11采纳,获得10
8秒前
柯佳君发布了新的文献求助20
8秒前
9秒前
丘比特应助hehsk采纳,获得10
9秒前
annieduan发布了新的文献求助10
9秒前
人福药业完成签到,获得积分10
9秒前
zxx发布了新的文献求助30
10秒前
娜行发布了新的文献求助10
10秒前
九霄发布了新的文献求助10
11秒前
zhs发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594