How can green innovation from manufacturers benefit from supplier networks?

业务 供应链管理 供应商关系管理 知识管理 独创性 供应网络 多样性(政治) 供应链 实证研究 绿色创新 产业组织 营销 计算机科学 创造力 功率(物理) 哲学 物理 认识论 量子力学 社会学 政治学 人类学 法学
作者
Colin C.J. Cheng,Shu‐Han Hsu,Chwen Sheu
出处
期刊:Supply Chain Management [Emerald Publishing Limited]
卷期号:28 (3): 559-575 被引量:9
标识
DOI:10.1108/scm-09-2021-0443
摘要

Purpose Prior research on supply chain management has advanced substantially our understanding of how suppliers’ knowledge affects manufacturers’ green innovation. However, overlooking the suppliers’ diverse green knowledge in supplier networks, namely, green knowledge diversity, has limited our understanding of both supply chain management and green innovation development. To address this important issue, this study aims to rely on social network theory as the overarching framework and knowledge-based view as the underlying theoretical foundation to examine how green knowledge diversity contributes to manufacturers’ green innovation performance, while considering three types of supplier network properties (network strength, network heterogeneity and network density). Design/methodology/approach This study collects both survey and secondary proxy data from 209 manufacturing firms over three time periods (mid-2018, mid-2019 and mid-2020). PROCESS macro is applied to test the research hypotheses. Findings The results provide compelling evidence that green knowledge management processes partially mediate the effect of green knowledge diversity on manufacturers’ green innovation performance. The effect of green knowledge diversity is strengthened by supplier network strength and supplier network heterogeneity, but hindered by supplier network density. Practical implications This study provides a practical guide to help manufacturers enhance green innovation performance by properly managing and leveraging their suppliers’ diverse green knowledge domains in supplier networks. Originality/value This study contributes to the supply chain management and green innovation literature by offering novel theoretical and empirical insights into how manufacturers can use their supplier networks to strengthen green innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金伯宣发布了新的文献求助10
1秒前
1秒前
2秒前
沉默的香氛完成签到 ,获得积分10
3秒前
令狐绝音完成签到,获得积分10
4秒前
4秒前
Atopos发布了新的文献求助10
5秒前
6秒前
huohuo143完成签到,获得积分10
6秒前
英俊的铭应助蜂蜜罐zi采纳,获得10
8秒前
9秒前
xiu完成签到,获得积分10
9秒前
KINDMAGIC发布了新的文献求助10
11秒前
熊逍发布了新的文献求助10
12秒前
Orange应助鱼丸采纳,获得10
12秒前
含蓄垣发布了新的文献求助10
14秒前
16秒前
整齐的霸发布了新的文献求助20
16秒前
16秒前
18秒前
KINDMAGIC完成签到,获得积分10
20秒前
鱼丸发布了新的文献求助10
22秒前
支雨泽发布了新的文献求助10
22秒前
许许完成签到,获得积分10
23秒前
闲听花落完成签到 ,获得积分10
23秒前
橘白应助爱笑的幻姬采纳,获得10
23秒前
西南楚留香完成签到,获得积分10
26秒前
大旭发布了新的文献求助10
27秒前
哔哔鱼发布了新的文献求助10
28秒前
梅子完成签到 ,获得积分10
30秒前
科研通AI5应助RockLee采纳,获得10
30秒前
万能图书馆应助丑丑阿采纳,获得10
31秒前
33秒前
37秒前
37秒前
橘白应助爱笑的幻姬采纳,获得10
37秒前
40秒前
FAN凡完成签到,获得积分20
40秒前
董董发布了新的文献求助10
41秒前
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741422
求助须知:如何正确求助?哪些是违规求助? 3284072
关于积分的说明 10038118
捐赠科研通 3000880
什么是DOI,文献DOI怎么找? 1646811
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478