Adversarial Counterfactual Environment Model Learning

反事实思维 对抗制 计算机科学 机器学习 人工智能 一般化 伽利略(卫星导航) 数学 大地测量学 认识论 数学分析 哲学 地理
作者
Xionghui Chen,Yang Yu,Zhengmao Zhu,Zhihua Yu,Zhenjun Chen,Chenghe Wang,Yinan Wu,Hongqiu Wu,Rongjun Qin,Ruijin Ding,Fangsheng Huang
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2206.04890
摘要

A good model for action-effect prediction, named environment model, is important to achieve sample-efficient decision-making policy learning in many domains like robot control, recommender systems, and patients' treatment selection. We can take unlimited trials with such a model to identify the appropriate actions so that the costs of queries in the real world can be saved. It requires the model to handle unseen data correctly, also called counterfactual data. However, standard data fitting techniques do not automatically achieve such generalization ability and commonly result in unreliable models. In this work, we introduce counterfactual-query risk minimization (CQRM) in model learning for generalizing to a counterfactual dataset queried by a specific target policy. Since the target policies can be various and unknown in policy learning, we propose an adversarial CQRM objective in which the model learns on counterfactual data queried by adversarial policies, and finally derive a tractable solution GALILEO. We also discover that adversarial CQRM is closely related to the adversarial model learning, explaining the effectiveness of the latter. We apply GALILEO in synthetic tasks and a real-world application. The results show that GALILEO makes accurate predictions on counterfactual data and thus significantly improves policies in real-world testing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王小胖完成签到,获得积分20
1秒前
CScs25完成签到 ,获得积分10
1秒前
1秒前
小李发布了新的文献求助10
1秒前
jingmishensi发布了新的文献求助10
2秒前
科研通AI6应助大气怜烟采纳,获得10
2秒前
2秒前
小乐儿~完成签到,获得积分10
2秒前
2秒前
灵巧鑫发布了新的文献求助10
3秒前
zzr123发布了新的文献求助10
3秒前
3秒前
3秒前
曦梦源完成签到,获得积分10
3秒前
共享精神应助飞快的代天采纳,获得10
4秒前
白华苍松发布了新的文献求助10
4秒前
Hyc28441711发布了新的文献求助10
4秒前
一问三不知先生完成签到,获得积分10
4秒前
春风沂水发布了新的文献求助40
5秒前
云端梦境发布了新的文献求助10
5秒前
6秒前
6秒前
奇怪的茶叶菌完成签到,获得积分10
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066