尖晶石
原位
蚀刻(微加工)
化学
无机化学
矿物学
环境化学
材料科学
有机化学
冶金
图层(电子)
作者
Cangpeng Shan,Yan Zhang,Qian Zhao,Kaixuan Fu,Yanfei Zheng,Rui Han,Caixia Liu,Na Ji,Weichao Wang,Qingling Liu
标识
DOI:10.1021/acs.est.2c02483
摘要
Surface lattice oxygen is crucial to the degradation of volatile organic compounds (VOCs) over transition metal oxides according to the Mars-van Krevelen mechanism. Herein, λ-MnO2 in situ grown on the surface of CoMn spinel was prepared by acid etching of corresponding spinel catalysts (CoMn-Hx-Ty) for VOC oxidation. Experimental and relevant theoretical exploration revealed that acid etching on the CoMn spinel surface could decrease the electron cloud density around the O atom and weaken the adjacent Mn-O bond due to the fracture of the surface Co-O bond, facilitating electron transfer and subsequently the activation of surface lattice oxygen. The obtained CoMn-H1-T1 exhibited an excellent catalytic performance with a 90% acetone conversion at 149 °C, which is 42 °C lower than that of CoMn spinel. Furthermore, the partially maintained spinel structure led to better stability than pure λ-MnO2. In situ diffuse reflectance infrared Fourier transform spectroscopy confirmed a possible degradation pathway where adsorptive acetone converted into formate and acetate species and into CO2, in which the consumption of acetate was identified as the rate-limiting step. This strategy can improve the catalytic performance of metal oxides by activating surface lattice oxygen, to broaden their application in VOC oxidation.
科研通智能强力驱动
Strongly Powered by AbleSci AI