Electron spin modulation engineering in oxygen-involved electrocatalysis

析氧 电催化剂 单线态氧 自旋态 化学 催化作用 纳米技术 单重态 自旋极化 氧气 材料科学 电子 无机化学 物理 物理化学 激发态 电化学 原子物理学 电极 量子力学 有机化学
作者
Yue Yu,Dongping Xue,Huicong Xia,Xiaoyu Zhang,Shuyan Zhao,Yifan Wei,Yu Du,Ying Zhou,Wenfu Yan,Jianan Zhang
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
卷期号:34 (36): 364002-364002 被引量:9
标识
DOI:10.1088/1361-648x/ac7995
摘要

Electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reduction (OER) are regarded as the key reactions via the sustainable system (fuel cell and water splitting), respectively. In OER, the transition from singlet oxygen species to triplet oxygen molecules is involved, meanwhile the ORR involves the transition from triplet oxygen molecules to singlet oxygen species. However, in these processes, the number of unpaired electrons is not conserved, which is not thermodynamically favorable and creates an additional energy barrier. Fortunately, regulating the electrocatalysis by spin-state modulation enables a unique effect on the catalytic performance, but the current understanding on spin-state engineering for electro-catalyzing ORR and OER is still insufficient. Herein, this review summarized the in-spin engineering for the state-of-the-art ORR and OER electrocatalysts. It began by introducing engineering of spin-state to egfilling for ORR and OER process, and then moved to spin polarization and spin-pinning effect for OER process. Various designed strategies focusing on how to regulate the spin-state of the active center have been summarized up. The connectivity of the structures of typical ORR (e.g. metal-nitrogen-carbon) and OER (e.g. design strategies oxides, metal organic frameworks) catalysts depending on the spin level is also discussed. Finally, we present the outlook from the aspects of template catalysts, characterization methods, regulation strategies, theoretical calculations, which will further expand the possibility of better electrocatalytic performance through spin-state modulation. This review concluded some open suggestions and prospects, which are worthy of the community's future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的万声完成签到,获得积分10
1秒前
在水一方应助Cpp采纳,获得10
1秒前
1秒前
2秒前
2秒前
听风完成签到 ,获得积分10
3秒前
3秒前
王修强发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
ESLG发布了新的文献求助10
4秒前
贪玩翎完成签到,获得积分10
4秒前
why完成签到,获得积分10
4秒前
好好好完成签到,获得积分10
4秒前
磊哥1233发布了新的文献求助10
5秒前
5秒前
子车一手完成签到,获得积分10
6秒前
愉快迎南完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
76542cu发布了新的文献求助10
8秒前
yjy完成签到,获得积分10
8秒前
汉堡包应助Yddear采纳,获得20
8秒前
Zerolucky关注了科研通微信公众号
8秒前
丘比特应助xin采纳,获得10
8秒前
不吃香菜发布了新的文献求助10
8秒前
ada发布了新的文献求助10
9秒前
sss发布了新的文献求助30
9秒前
zhenghua发布了新的文献求助10
9秒前
田様应助cijing采纳,获得10
9秒前
Aurora发布了新的文献求助10
9秒前
10秒前
10秒前
Naomi发布了新的文献求助10
10秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239828
求助须知:如何正确求助?哪些是违规求助? 4407067
关于积分的说明 13717174
捐赠科研通 4275655
什么是DOI,文献DOI怎么找? 2346104
邀请新用户注册赠送积分活动 1343227
关于科研通互助平台的介绍 1301291