作者
Kirti Sinha,Shiv Kumar,Bindu Rawat,Rahul Singh,Rituraj Purohit,Dinesh Kumar,Yogendra Padwad
摘要
Therapeutic failure and drug resistance are common sequelae to insulin resistance associated with type 2 diabetes mellitus (T2DM). Consequently, there is an unmet need of alternative strategies to overcome insulin resistance associated complications.To demonstrate whether Kutkin (KT), iridoid glycoside enriched fraction of Picrorhiza kurroa extract (PKE) has potential to increase the insulin sensitivity vis à vis glucose uptake in differentiated adipocytes.Molecular interaction of KT phytoconstituents, picroside-I (P-I) & picroside- II (P-II) with peroxisome proliferator-activated receptor gamma (PPARγ), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) were analyzed in silico. Cellular viability and adipogenesis were determined by following 3-(4, 5-Dimethylthiazol-2-Yl)-2, 5-Diphenyltetrazolium bromide (MTT) assay and Oil Red-O staining. Further, ELISA kit based triglycerides and diacylglycerol-O-Acyltransferase-1 (DGAT1) were assessed in differentiated adipocytes. ELISA based determination were performed to check the levels of adiponectin and tumor necrosis factor alpha (TNF-α). However, Flow cytometry and immunofluorescence based assays were employed to measure the glucose uptake and glucose transporter 4 (glut4) expression in differentiated adipocytes, respectively. Further to explore the targeted signaling axis, mRNA expression levels of PPARγ, CCAAT/enhancer binding protein α (CEBPα), and glut4 were determined using qRT-PCR and insulin receptor substrate-1 (IRS-1), Insulin receptor substrate-2 (IRS-2), PI3K/Akt, AS160, glut4 followed by protein validation using immunoblotting in differentiated adipocytes.In silico analysis revealed the binding affinities of major constituents of KT (P-I& P-II) with PPARγ/PI3K/Akt. The enhanced intracellular accumulation of triglycerides with concomitant activation of PPARγ and C/EBPα in KT treated differentiated adipocytes indicates augmentation of adipogenesis in a concentration-dependent manner. Additionally, at cellular level, KT upregulated the expression of DAGT1, and decreases fatty acid synthase (FAS), and lipoprotein lipase (LPL), further affirmed improvement in lipid milieu. It was also observed that KT upregulated the levels of adiponectin and reduced TNFα expression, thus improving the secretory functions of adipocytes along with enhanced insulin sensitivity. Furthermore, KT significantly promoted insulin mediated glucose uptake by increasing glut4 translocation to the membrane via PI3/Akt signaling cascade. The results were further validated using PI3K specific inhibitor, wortmannin and findings revealed that KT treatment significantly enhanced the expression and activation of p-PI3K/PI3K and p-Akt/Akt even in case of treatment with PI3K inhibitor wortmannin alone and co-treatment with KT in differentiated adipocytes and affirmed that KT as activator of PI3K/Akt axis in the presence of inhibitor as well.Collectively, KT fraction of PKE showed anti-diabetic effects by enhancing glucose uptake in differentiated adipocytes via activation of PI3K/Akt signaling cascade. Therefore, KT may be used as a promising novel natural therapeutic agent for managing T2DMand to the best of our knowledge, this is the first report, showing the efficacy and potential molecular mechanism of KT in enhancing insulin sensitivity and glucose uptake in differentiated adipocytes.