Characterizing thalamic and basal ganglia nuclei in medically intractable focal epilepsy by MR fingerprinting

丘脑 基底神经节 磁共振成像 癫痫 尾状核 医学 核医学 神经科学 心理学 放射科 中枢神经系统
作者
Yingying Tang,Ting‐Yu Su,Joon Yul Choi,Siyuan Hu,Xiaofeng Wang,Ken Sakaie,Hiroatsu Murakami,Andreas Alexopoulos,Mark A. Griswold,Stephen E. Jones,Imad Najm,Dan Ma,Irène Wang
出处
期刊:Epilepsia [Wiley]
卷期号:63 (8): 1998-2010 被引量:11
标识
DOI:10.1111/epi.17318
摘要

Magnetic resonance fingerprinting (MRF) is a novel, quantitative, and noninvasive technique to measure brain tissue properties. We aim to use MRF for characterizing normal-appearing thalamic and basal ganglia nuclei in the epileptic brain.A three-dimensional (3D) MRF protocol (1 mm3 isotropic resolution) was acquired from 48 patients with unilateral medically intractable focal epilepsy and 39 healthy controls (HCs). Whole-brain T1 and T2 maps (containing T1 and T2 relaxation times) were reconstructed for each subject. Ten subcortical nuclei in the thalamus and basal ganglia were segmented as regions of interest (ROIs), within which the mean T1 and T2 values, as well as their coefficient of variation (CV) were compared between the patients and HCs at the group level. Subgroup and correlation analyses were performed to examine the relationship between significant MRF measures and various clinical characteristics. Using significantly abnormal MRF measures from the group-level analyses, support vector machine (SVM) and logistic regression machine learning models were built and tested with 5-fold and 10-fold cross-validations, to separate patients from HCs, and to separate patients with left-sided and right-sided epilepsy, at the individual level.MRF revealed increased T1 mean value in the ipsilateral thalamus and nucleus accumbens; increased T1 CV in the bilateral thalamus, bilateral pallidum, and ipsilateral caudate; and increased T2 CV in the ipsilateral thalamus in patients compared to HCs (p < .05, false discovery rate [FDR] corrected). The SVM classifier produced 78.2% average accuracy to separate individual patients from HCs, with an area under the curve (AUC) of 0.83. The logistic regression classifier produced 67.4% average accuracy to separate patients with left-sided and right-sided epilepsy, with an AUC of 0.72.MRF revealed bilateral tissue-property changes in the normal-appearing thalamus and basal ganglia, with ipsilateral predominance and thalamic preference, suggesting subcortical involvement/impairment in patients with medically intractable focal epilepsy. The individual-level performance of the MRF-based machine-learning models suggests potential opportunities for predicting lateralization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1908073612f发布了新的文献求助10
刚刚
大辉完成签到,获得积分10
1秒前
呼延一江完成签到,获得积分10
1秒前
1秒前
Allen完成签到,获得积分10
1秒前
1秒前
1秒前
SiDi完成签到,获得积分20
1秒前
冰心完成签到,获得积分10
2秒前
nannan发布了新的文献求助10
2秒前
soso发布了新的文献求助10
2秒前
听语说发布了新的文献求助10
2秒前
机灵绮山发布了新的文献求助10
2秒前
叶远望发布了新的文献求助10
3秒前
所所应助sdnihbhew采纳,获得10
3秒前
CT发布了新的文献求助10
3秒前
3秒前
coldzer0发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
WYS发布了新的文献求助30
6秒前
6秒前
兰格格完成签到,获得积分10
6秒前
罗小学发布了新的文献求助10
7秒前
7秒前
7秒前
xiaowang发布了新的文献求助10
7秒前
ZWZWXY完成签到 ,获得积分10
8秒前
8秒前
5411完成签到 ,获得积分10
8秒前
认真蚂蚁发布了新的文献求助10
9秒前
铠甲勇士完成签到,获得积分10
9秒前
10秒前
打打应助zyq采纳,获得10
10秒前
Gins完成签到,获得积分10
10秒前
完美世界应助夜雨采纳,获得10
10秒前
罗鸯鸯发布了新的文献求助10
10秒前
兰彻完成签到,获得积分10
11秒前
无花果应助daheeeee采纳,获得10
11秒前
生动的千柳完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071562
求助须知:如何正确求助?哪些是违规求助? 4292245
关于积分的说明 13373618
捐赠科研通 4112992
什么是DOI,文献DOI怎么找? 2252181
邀请新用户注册赠送积分活动 1257228
关于科研通互助平台的介绍 1189934