A Guide for the Application of Statistics in Biomedical Studies Concerning Machine Learning and Artificial Intelligence

术语 结果(博弈论) 人工智能 透视图(图形) 机器学习 主题(文档) 光学(聚焦) 计算机科学 数据科学 数学 万维网 哲学 语言学 物理 数理经济学 光学
作者
Evan M. Polce,Kyle N. Kunze
出处
期刊:Arthroscopy [Elsevier]
卷期号:39 (2): 151-158 被引量:11
标识
DOI:10.1016/j.arthro.2022.04.016
摘要

With the plethora of machine learning (ML) analyses published in the orthopaedic literature within the last 5 years, several attempts have been made to enhance our understanding of what exactly ML means and how it is used. At its most fundamental level, ML comprises a branch of artificial intelligence that uses algorithms to analyze and learn from patterns in data without explicit programming or human intervention. On the other hand, traditional statistics require a user to specifically choose variables of interest to create a model capable of predicting an outcome, the output of which (1) may be falsely influenced by the variables chosen to be included by the user and (2) does not allow for optimization of performance. Early publications have served as succinct editorials or reviews intended to ease audiences unfamiliar with ML into the complexities that accompany the subject. Most commonly, the focus of these studies concerns the terminology and concepts surrounding ML because it is important to understand the rationale behind performing such studies. Unfortunately, these publications only touch on the most basic aspects of ML and are too frequently repetitive. Indeed, the conclusion of these articles reiterate that the potential clinical utility of these algorithms remains tangential at best in their current form and caution against premature adoption without external validation. By doing so, our perspective and ability to draw our own conclusions from these studies have not advanced, and we are left concluding with each subsequent study that a new algorithm is published for an outcome of interest that cannot be used until further validation. What readers now need is to regress to embrace the principles of the scientific method that they have used to critically assess vast numbers of publications before this wave of newly applied statistical methodology-a guide to interpret results such that their own conclusions can be drawn. LEVEL OF EVIDENCE: Level V, expert opinion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助西海岸的风采纳,获得10
刚刚
英勇碧空发布了新的文献求助10
1秒前
科研通AI2S应助Tao2023采纳,获得10
1秒前
王鑫发布了新的文献求助10
1秒前
传奇3应助戴先森采纳,获得10
1秒前
2秒前
2秒前
bkagyin应助落叶无悔采纳,获得10
2秒前
quan完成签到 ,获得积分10
3秒前
Gary完成签到,获得积分10
3秒前
Tonald Yang发布了新的文献求助10
4秒前
4秒前
yqzhang完成签到,获得积分10
4秒前
开心的盛男完成签到 ,获得积分10
4秒前
闲来逛逛007完成签到 ,获得积分10
5秒前
吴家小世界完成签到,获得积分20
5秒前
Hello应助windli采纳,获得200
6秒前
6秒前
滴滴滴滴完成签到,获得积分10
7秒前
7秒前
8秒前
shilong.yang发布了新的文献求助50
8秒前
酌锦发布了新的文献求助10
9秒前
9秒前
西海岸的源源源完成签到,获得积分10
10秒前
10秒前
Ar完成签到,获得积分10
10秒前
junluoyu完成签到,获得积分10
10秒前
过程美发布了新的文献求助10
10秒前
在水一方应助赞zan采纳,获得10
11秒前
11秒前
娃娃菜完成签到,获得积分10
11秒前
12秒前
益笙鸿老板完成签到 ,获得积分10
12秒前
戴先森发布了新的文献求助10
12秒前
12秒前
jr完成签到,获得积分10
13秒前
13秒前
共享精神应助羲和采纳,获得10
13秒前
小泉发布了新的文献求助30
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135928
求助须知:如何正确求助?哪些是违规求助? 2786670
关于积分的说明 7779194
捐赠科研通 2442969
什么是DOI,文献DOI怎么找? 1298748
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870