BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment

计算机科学 卷积神经网络 磁共振弥散成像 认知 人工智能 背景(考古学) 杠杆(统计) 神经影像学 机器学习 模式识别(心理学) 神经科学 心理学 医学 磁共振成像 放射科 生物 古生物学
作者
Jeremy Kawahara,Colin J. Brown,Steven P. Miller,Brian G. Booth,Vann Chau,Ruth E. Grunau,Jill G. Zwicker,Ghassan Hamarneh
出处
期刊:NeuroImage [Elsevier]
卷期号:146: 1038-1049 被引量:537
标识
DOI:10.1016/j.neuroimage.2016.09.046
摘要

We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
仁爱仙人掌完成签到,获得积分10
2秒前
ywang发布了新的文献求助10
2秒前
4秒前
4秒前
4秒前
ewqw关注了科研通微信公众号
5秒前
曦小蕊完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
奋斗灵波发布了新的文献求助10
7秒前
药学牛马发布了新的文献求助10
7秒前
7秒前
科研通AI5应助WZ0904采纳,获得10
8秒前
叶未晞yi发布了新的文献求助10
9秒前
ipeakkka发布了新的文献求助10
10秒前
Jzhang应助迷人的映雁采纳,获得10
10秒前
10秒前
zzz完成签到,获得积分10
11秒前
11秒前
小安发布了新的文献求助10
11秒前
12秒前
叶未晞yi完成签到,获得积分10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得30
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
kilig应助科研通管家采纳,获得10
15秒前
15秒前
华仔应助科研通管家采纳,获得30
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
博ge发布了新的文献求助10
17秒前
18秒前
葶儿发布了新的文献求助10
18秒前
hgcyp完成签到,获得积分10
23秒前
ysh完成签到,获得积分10
23秒前
23秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824