BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment

计算机科学 卷积神经网络 磁共振弥散成像 认知 人工智能 背景(考古学) 杠杆(统计) 神经影像学 机器学习 模式识别(心理学) 神经科学 心理学 医学 磁共振成像 放射科 生物 古生物学
作者
Jeremy Kawahara,Colin J. Brown,Steven P. Miller,Brian G. Booth,Vann Chau,Ruth E. Grunau,Jill G. Zwicker,Ghassan Hamarneh
出处
期刊:NeuroImage [Elsevier]
卷期号:146: 1038-1049 被引量:633
标识
DOI:10.1016/j.neuroimage.2016.09.046
摘要

We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mxczsl完成签到,获得积分10
刚刚
1秒前
hai完成签到,获得积分10
2秒前
zhlh发布了新的文献求助10
4秒前
wanci应助Wqian采纳,获得10
5秒前
隐形曼青应助安详的听白采纳,获得10
5秒前
12秒前
明亮紫易发布了新的文献求助10
14秒前
Xjx6519发布了新的文献求助10
15秒前
16秒前
19秒前
烟花应助ami采纳,获得10
22秒前
ivy发布了新的文献求助10
24秒前
25秒前
抹茶泡泡完成签到 ,获得积分10
26秒前
赫连烙发布了新的文献求助10
27秒前
Teddyfeeder完成签到,获得积分10
28秒前
洛黎完成签到 ,获得积分10
29秒前
丘比特应助ivy采纳,获得10
29秒前
山屿发布了新的文献求助30
30秒前
李健应助山雀采纳,获得10
31秒前
开心发布了新的文献求助10
31秒前
31秒前
洛黎关注了科研通微信公众号
32秒前
完美世界应助冷静的荧荧采纳,获得10
34秒前
34秒前
36秒前
36秒前
37秒前
zhlh完成签到,获得积分10
37秒前
科研通AI6应助Xjx6519采纳,获得20
38秒前
tree发布了新的文献求助10
40秒前
tassssadar发布了新的文献求助10
42秒前
Wqian发布了新的文献求助10
43秒前
yiyi完成签到,获得积分10
44秒前
热情高跟鞋完成签到,获得积分10
47秒前
48秒前
50秒前
tassssadar完成签到,获得积分10
51秒前
兰宁发布了新的文献求助30
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550