BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment

计算机科学 卷积神经网络 磁共振弥散成像 认知 人工智能 背景(考古学) 杠杆(统计) 神经影像学 机器学习 模式识别(心理学) 神经科学 心理学 医学 磁共振成像 放射科 生物 古生物学
作者
Jeremy Kawahara,Colin J. Brown,Steven P. Miller,Brian G. Booth,Vann Chau,Ruth E. Grunau,Jill G. Zwicker,Ghassan Hamarneh
出处
期刊:NeuroImage [Elsevier]
卷期号:146: 1038-1049 被引量:728
标识
DOI:10.1016/j.neuroimage.2016.09.046
摘要

We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助姜茶采纳,获得30
1秒前
ken发布了新的文献求助10
1秒前
2秒前
Mu07发布了新的文献求助10
2秒前
顾矜应助酌鹿采纳,获得10
3秒前
yeerenn完成签到,获得积分10
3秒前
陈秀娟完成签到,获得积分10
3秒前
晚星就位发布了新的文献求助10
3秒前
春夏爱科研完成签到,获得积分10
4秒前
Yidie发布了新的文献求助10
5秒前
5秒前
chengyu应助lhm采纳,获得10
6秒前
丘比特应助童绾绾采纳,获得10
7秒前
量子星尘发布了新的文献求助10
10秒前
传奇3应助拘留所采纳,获得10
10秒前
小爱同学发布了新的文献求助10
10秒前
怜然完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
13秒前
13秒前
14秒前
星辰大海应助民网采纳,获得10
14秒前
咋咋发布了新的文献求助10
14秒前
顾矜应助mxy采纳,获得10
15秒前
飘逸的狗发布了新的文献求助10
15秒前
852应助zz桓桓采纳,获得10
16秒前
17秒前
Ava应助主手的麻衣采纳,获得10
18秒前
19秒前
20秒前
现代书雪发布了新的文献求助10
20秒前
勇敢牛牛发布了新的文献求助10
20秒前
酌鹿发布了新的文献求助10
20秒前
Ziven完成签到,获得积分10
20秒前
21秒前
天真三问给天真三问的求助进行了留言
21秒前
wys3712发布了新的文献求助20
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213