BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment

计算机科学 卷积神经网络 磁共振弥散成像 认知 人工智能 背景(考古学) 杠杆(统计) 神经影像学 机器学习 模式识别(心理学) 神经科学 心理学 医学 磁共振成像 放射科 生物 古生物学
作者
Jeremy Kawahara,Colin J. Brown,Steven P. Miller,Brian G. Booth,Vann Chau,Ruth E. Grunau,Jill G. Zwicker,Ghassan Hamarneh
出处
期刊:NeuroImage [Elsevier BV]
卷期号:146: 1038-1049 被引量:633
标识
DOI:10.1016/j.neuroimage.2016.09.046
摘要

We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
九方完成签到,获得积分10
2秒前
3秒前
彩虹大侠完成签到,获得积分10
3秒前
拼搏诗翠完成签到 ,获得积分10
4秒前
4秒前
火星上昊焱完成签到 ,获得积分10
5秒前
garden发布了新的文献求助10
6秒前
6秒前
我爱学习完成签到,获得积分10
6秒前
panpanliumin完成签到,获得积分0
7秒前
7秒前
细心香烟完成签到 ,获得积分10
8秒前
8秒前
wlscj完成签到,获得积分10
8秒前
华仔应助大意的豌豆采纳,获得10
8秒前
9秒前
9秒前
隐形曼青应助健忘芹采纳,获得10
9秒前
小马甲应助拼搏的无颜采纳,获得10
9秒前
10秒前
garden完成签到,获得积分10
10秒前
peace发布了新的文献求助10
12秒前
欣慰的小甜瓜完成签到 ,获得积分10
12秒前
13秒前
zsp发布了新的文献求助10
13秒前
zlc发布了新的文献求助10
13秒前
14秒前
瞿qks完成签到,获得积分10
16秒前
17秒前
拼搏的无颜完成签到,获得积分10
17秒前
肖遥发布了新的文献求助10
17秒前
Raven应助咩啊咩吖采纳,获得10
17秒前
18秒前
有钱发布了新的文献求助10
19秒前
BiuBiu怪完成签到,获得积分10
19秒前
19秒前
我是老大应助文闵采纳,获得50
21秒前
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544