BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment

计算机科学 卷积神经网络 磁共振弥散成像 认知 人工智能 背景(考古学) 杠杆(统计) 神经影像学 机器学习 模式识别(心理学) 神经科学 心理学 医学 磁共振成像 放射科 生物 古生物学
作者
Jeremy Kawahara,Colin J. Brown,Steven P. Miller,Brian G. Booth,Vann Chau,Ruth E. Grunau,Jill G. Zwicker,Ghassan Hamarneh
出处
期刊:NeuroImage [Elsevier BV]
卷期号:146: 1038-1049 被引量:588
标识
DOI:10.1016/j.neuroimage.2016.09.046
摘要

We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海孩子发布了新的文献求助10
1秒前
调皮正豪完成签到,获得积分10
1秒前
典雅碧空发布了新的文献求助10
2秒前
追忆发布了新的文献求助10
2秒前
Rondab应助小无采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
祝问柳完成签到,获得积分20
5秒前
lixiviant完成签到,获得积分20
7秒前
7秒前
11秒前
ysy完成签到,获得积分10
13秒前
Foch发布了新的文献求助20
13秒前
13秒前
momo完成签到,获得积分10
13秒前
阿卓西完成签到,获得积分10
16秒前
柠檬发布了新的文献求助10
16秒前
16秒前
rrraymond发布了新的文献求助10
17秒前
华仔应助Liiii采纳,获得10
19秒前
19秒前
JamesPei应助科研通管家采纳,获得10
20秒前
20秒前
棋士应助科研通管家采纳,获得10
20秒前
ED应助科研通管家采纳,获得10
20秒前
小无完成签到,获得积分10
20秒前
22秒前
25秒前
科研通AI2S应助positive采纳,获得10
25秒前
26秒前
温暖幻桃发布了新的文献求助10
28秒前
下南完成签到,获得积分10
29秒前
jar7989发布了新的文献求助10
29秒前
33秒前
34秒前
35秒前
35秒前
36秒前
英姑应助玖玖采纳,获得10
38秒前
震动的沉鱼完成签到 ,获得积分10
39秒前
魏笑白完成签到 ,获得积分10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954414
求助须知:如何正确求助?哪些是违规求助? 3500373
关于积分的说明 11099295
捐赠科研通 3230866
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801689