Systems Toxicology: Systematic Approach to Predict Toxicity

毒性 毒理 生物 医学 内科学
作者
Narsis A. Kiani,Ming-Mei Shang,Jesper Tegnér
出处
期刊:Current Pharmaceutical Design [Bentham Science]
卷期号:22 (46): 6911-6917 被引量:10
标识
DOI:10.2174/1381612822666161003115629
摘要

Drug discovery is complex and expensive. Numerous drug candidates fail late in clinical trials or even after being released to the market. These failures are not only due to commercial considerations and less optimal drug efficacies but, adverse reactions originating from toxic effects also constitute a major challenge. During the last two decades, significant advances have been made enabling the early prediction of toxic effects using in silico techniques. However, by design, these essentially statistical techniques have not taken the disease driving pathophysiological mechanisms into account. The complexity of such mechanisms in combination with their interactions with drugspecific properties and environmental and life-style related factors renders the task of predicting toxicity on a purely statistical basis which is an insurmountable challenge. In response to this situation, an interdisciplinary field has developed, referred to as systems toxicology, where the notion of a network is used to integrate and model different types of information to better predict drug toxicity. In this study, we briefly review the merits and limitations of such recent promising predictive approaches integrating molecular networks, chemical compound networks, and protein drug association networks. Keywords: System pharmacology, drug adverse effects, predictive modeling, network analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yixuan完成签到,获得积分10
3秒前
Leeny发布了新的文献求助10
3秒前
所所应助孤梦落雨采纳,获得10
3秒前
shaco发布了新的文献求助10
6秒前
7秒前
sdahjjyk发布了新的文献求助10
7秒前
CipherSage应助姜且采纳,获得10
8秒前
不配.应助破伤疯采纳,获得10
10秒前
10秒前
11秒前
13秒前
15秒前
双木夕发布了新的文献求助10
15秒前
代骜珺发布了新的文献求助10
15秒前
孤梦落雨发布了新的文献求助10
17秒前
乐乐应助sdahjjyk采纳,获得10
18秒前
18秒前
aizhujun发布了新的文献求助10
18秒前
思源应助周大炮采纳,获得10
18秒前
可爱的函函应助qqa采纳,获得10
19秒前
xue完成签到 ,获得积分10
21秒前
文儿发布了新的文献求助10
22秒前
万能图书馆应助aizhujun采纳,获得10
22秒前
放火陈老魔完成签到,获得积分10
22秒前
hokuto应助阿宝采纳,获得10
23秒前
HB完成签到,获得积分10
25秒前
26秒前
26秒前
茶包发布了新的文献求助30
26秒前
27秒前
jingcheng完成签到,获得积分10
28秒前
29秒前
29秒前
万康发布了新的文献求助10
31秒前
小新爱看文献完成签到,获得积分10
31秒前
imi完成签到 ,获得积分10
31秒前
qqa发布了新的文献求助10
32秒前
32秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136151
求助须知:如何正确求助?哪些是违规求助? 2787065
关于积分的说明 7780419
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298945
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870