Predicting Severe Pneumonia Outcomes in Children

医学 肺炎 一致性 肺炎严重指数 疾病严重程度 重症监护 社区获得性肺炎 临床预测规则 逻辑回归 病因学 儿科 混淆 前瞻性队列研究 电子健康档案 重症监护医学 急诊医学 医疗保健 内科学 经济 经济增长
作者
Derek J. Williams,Yuwei Zhu,Carlos G. Grijalva,Wesley H. Self,Frank E. Harrell,Carrie Reed,Chris Stockmann,Sandra R. Arnold,Krow Ampofo,Evan J. Anderson,Anna M. Bramley,Richard G. Wunderink,Jonathan A. McCullers,Andrew T. Pavia,Seema Jain,Kathryn M. Edwards
出处
期刊:Pediatrics [American Academy of Pediatrics]
卷期号:138 (4) 被引量:90
标识
DOI:10.1542/peds.2016-1019
摘要

BACKGROUND: Substantial morbidity and excessive care variation are seen with pediatric pneumonia. Accurate risk-stratification tools to guide clinical decision-making are needed. METHODS: We developed risk models to predict severe pneumonia outcomes in children (<18 years) by using data from the Etiology of Pneumonia in the Community Study, a prospective study of community-acquired pneumonia hospitalizations conducted in 3 US cities from January 2010 to June 2012. In-hospital outcomes were organized into an ordinal severity scale encompassing severe (mechanical ventilation, shock, or death), moderate (intensive care admission only), and mild (non–intensive care hospitalization) outcomes. Twenty predictors, including patient, laboratory, and radiographic characteristics at presentation, were evaluated in 3 models: a full model included all 20 predictors, a reduced model included 10 predictors based on expert consensus, and an electronic health record (EHR) model included 9 predictors typically available as structured data within comprehensive EHRs. Ordinal regression was used for model development. Predictive accuracy was estimated by using discrimination (concordance index). RESULTS: Among the 2319 included children, 21% had a moderate or severe outcome (14% moderate, 7% severe). Each of the models accurately identified risk for moderate or severe pneumonia (concordance index across models 0.78–0.81). Age, vital signs, chest indrawing, and radiologic infiltrate pattern were the strongest predictors of severity. The reduced and EHR models retained most of the strongest predictors and performed as well as the full model. CONCLUSIONS: We created 3 risk models that accurately estimate risk for severe pneumonia in children. Their use holds the potential to improve care and outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星寒发布了新的文献求助10
1秒前
天真依玉完成签到,获得积分10
1秒前
斗南无花完成签到 ,获得积分10
2秒前
心想事橙发布了新的文献求助10
2秒前
2秒前
一只小可爱完成签到,获得积分10
4秒前
啊啊啊肥完成签到,获得积分20
5秒前
5秒前
小蘑菇应助宁琳采纳,获得10
5秒前
ding应助liang采纳,获得10
7秒前
8秒前
星寒完成签到,获得积分10
8秒前
9秒前
挽眠完成签到,获得积分20
9秒前
9秒前
华仔应助nanalalal采纳,获得10
9秒前
林悦涵发布了新的文献求助10
9秒前
小巧蛋挞发布了新的文献求助10
10秒前
白华苍松发布了新的文献求助20
11秒前
11秒前
Yuna96发布了新的文献求助10
11秒前
完美世界应助Keylor采纳,获得10
11秒前
啊啊啊肥发布了新的文献求助20
13秒前
李健的小迷弟应助啊娴仔采纳,获得10
13秒前
13秒前
Delia发布了新的文献求助10
14秒前
大模型应助木生采纳,获得10
14秒前
飘逸完成签到,获得积分10
15秒前
15秒前
16秒前
心想事橙完成签到,获得积分10
16秒前
淡然的智宸完成签到,获得积分10
17秒前
18秒前
科研通AI2S应助Bambi采纳,获得30
18秒前
19秒前
19秒前
99完成签到,获得积分10
19秒前
兮颜发布了新的文献求助10
19秒前
19秒前
Solar energy发布了新的文献求助10
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919