Predicting Severe Pneumonia Outcomes in Children

医学 肺炎 一致性 肺炎严重指数 疾病严重程度 重症监护 社区获得性肺炎 临床预测规则 逻辑回归 病因学 儿科 混淆 电子健康档案 重症监护医学 急诊医学 医疗保健 内科学 经济 经济增长
作者
Derek J. Williams,Yuwei Zhu,Carlos G. Grijalva,Wesley H. Self,Frank E. Harrell,Carrie Reed,Chris Stockmann,Sandra R. Arnold,Krow Ampofo,Evan J. Anderson,Anna M. Bramley,Richard G. Wunderink,Jonathan A. McCullers,Andrew T. Pavia,Seema Jain,Kathryn M. Edwards
出处
期刊:Pediatrics [American Academy of Pediatrics]
卷期号:138 (4) 被引量:118
标识
DOI:10.1542/peds.2016-1019
摘要

BACKGROUND: Substantial morbidity and excessive care variation are seen with pediatric pneumonia. Accurate risk-stratification tools to guide clinical decision-making are needed. METHODS: We developed risk models to predict severe pneumonia outcomes in children (<18 years) by using data from the Etiology of Pneumonia in the Community Study, a prospective study of community-acquired pneumonia hospitalizations conducted in 3 US cities from January 2010 to June 2012. In-hospital outcomes were organized into an ordinal severity scale encompassing severe (mechanical ventilation, shock, or death), moderate (intensive care admission only), and mild (non–intensive care hospitalization) outcomes. Twenty predictors, including patient, laboratory, and radiographic characteristics at presentation, were evaluated in 3 models: a full model included all 20 predictors, a reduced model included 10 predictors based on expert consensus, and an electronic health record (EHR) model included 9 predictors typically available as structured data within comprehensive EHRs. Ordinal regression was used for model development. Predictive accuracy was estimated by using discrimination (concordance index). RESULTS: Among the 2319 included children, 21% had a moderate or severe outcome (14% moderate, 7% severe). Each of the models accurately identified risk for moderate or severe pneumonia (concordance index across models 0.78–0.81). Age, vital signs, chest indrawing, and radiologic infiltrate pattern were the strongest predictors of severity. The reduced and EHR models retained most of the strongest predictors and performed as well as the full model. CONCLUSIONS: We created 3 risk models that accurately estimate risk for severe pneumonia in children. Their use holds the potential to improve care and outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪发布了新的文献求助10
1秒前
单薄白薇发布了新的文献求助10
1秒前
豆子完成签到,获得积分10
2秒前
通~发布了新的文献求助10
3秒前
橘子哥完成签到,获得积分10
3秒前
mnm发布了新的文献求助10
4秒前
柔弱凡松发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
SHDeathlock发布了新的文献求助50
5秒前
乐乐应助hu970采纳,获得10
5秒前
单薄白薇完成签到,获得积分10
7秒前
陈杰发布了新的文献求助10
7秒前
7秒前
7秒前
小张张发布了新的文献求助10
7秒前
乐乐应助YAN采纳,获得10
8秒前
迷惘墨香完成签到 ,获得积分10
9秒前
9秒前
Cynthia发布了新的文献求助30
9秒前
共享精神应助shenyanlei采纳,获得10
10秒前
wwww发布了新的文献求助10
10秒前
蔡菜菜完成签到,获得积分10
11秒前
852应助小余采纳,获得10
11秒前
饱满秋完成签到,获得积分10
12秒前
夜白发布了新的文献求助20
12秒前
搜集达人应助明月清风采纳,获得10
12秒前
希夷发布了新的文献求助10
13秒前
13秒前
爆米花应助通~采纳,获得10
13秒前
苏靖完成签到,获得积分10
13秒前
luoyutian发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
科研通AI5应助猪猪采纳,获得10
14秒前
14秒前
海绵体宝宝应助an采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762