Predicting Severe Pneumonia Outcomes in Children

医学 肺炎 一致性 肺炎严重指数 疾病严重程度 重症监护 社区获得性肺炎 临床预测规则 逻辑回归 病因学 儿科 混淆 电子健康档案 重症监护医学 急诊医学 医疗保健 内科学 经济 经济增长
作者
Derek J. Williams,Yuwei Zhu,Carlos G. Grijalva,Wesley H. Self,Frank E. Harrell,Carrie Reed,Chris Stockmann,Sandra R. Arnold,Krow Ampofo,Evan J. Anderson,Anna M. Bramley,Richard G. Wunderink,Jonathan A. McCullers,Andrew T. Pavia,Seema Jain,Kathryn M. Edwards
出处
期刊:Pediatrics [American Academy of Pediatrics]
卷期号:138 (4) 被引量:118
标识
DOI:10.1542/peds.2016-1019
摘要

BACKGROUND: Substantial morbidity and excessive care variation are seen with pediatric pneumonia. Accurate risk-stratification tools to guide clinical decision-making are needed. METHODS: We developed risk models to predict severe pneumonia outcomes in children (<18 years) by using data from the Etiology of Pneumonia in the Community Study, a prospective study of community-acquired pneumonia hospitalizations conducted in 3 US cities from January 2010 to June 2012. In-hospital outcomes were organized into an ordinal severity scale encompassing severe (mechanical ventilation, shock, or death), moderate (intensive care admission only), and mild (non–intensive care hospitalization) outcomes. Twenty predictors, including patient, laboratory, and radiographic characteristics at presentation, were evaluated in 3 models: a full model included all 20 predictors, a reduced model included 10 predictors based on expert consensus, and an electronic health record (EHR) model included 9 predictors typically available as structured data within comprehensive EHRs. Ordinal regression was used for model development. Predictive accuracy was estimated by using discrimination (concordance index). RESULTS: Among the 2319 included children, 21% had a moderate or severe outcome (14% moderate, 7% severe). Each of the models accurately identified risk for moderate or severe pneumonia (concordance index across models 0.78–0.81). Age, vital signs, chest indrawing, and radiologic infiltrate pattern were the strongest predictors of severity. The reduced and EHR models retained most of the strongest predictors and performed as well as the full model. CONCLUSIONS: We created 3 risk models that accurately estimate risk for severe pneumonia in children. Their use holds the potential to improve care and outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情的山水完成签到 ,获得积分10
1秒前
glay完成签到 ,获得积分10
1秒前
溏心发布了新的文献求助20
1秒前
冬瓜发布了新的文献求助10
1秒前
2秒前
张怡乐发布了新的文献求助10
2秒前
艾迪富富完成签到,获得积分10
3秒前
清风发布了新的文献求助10
3秒前
壹贰完成签到,获得积分10
3秒前
兴奋的定帮应助云微颖采纳,获得10
4秒前
tong完成签到,获得积分10
4秒前
Ripples完成签到,获得积分10
6秒前
6秒前
zmuzhang2019完成签到,获得积分10
6秒前
寄居蟹完成签到,获得积分10
6秒前
LHZ完成签到,获得积分10
7秒前
YZJing完成签到,获得积分10
7秒前
情怀应助时尚俊驰采纳,获得10
7秒前
ssjk发布了新的文献求助10
7秒前
Ceaser完成签到,获得积分10
7秒前
万能图书馆应助hzt采纳,获得10
8秒前
8秒前
明亮飞双完成签到,获得积分10
9秒前
虚拟的凡波完成签到,获得积分10
9秒前
可靠若云完成签到,获得积分10
10秒前
魏曼柔完成签到,获得积分10
10秒前
快乐大炮给快乐大炮的求助进行了留言
10秒前
Dudidu完成签到,获得积分10
11秒前
搜集达人应助子衿采纳,获得10
11秒前
明理夜山发布了新的文献求助10
11秒前
tian发布了新的文献求助10
11秒前
谷粱诗云完成签到,获得积分10
12秒前
小乐应助小公牛采纳,获得10
12秒前
刘世昇完成签到,获得积分10
13秒前
佛人世间完成签到,获得积分10
13秒前
xyx完成签到,获得积分10
13秒前
深情安青应助阿治采纳,获得10
13秒前
14秒前
欣慰的白羊完成签到,获得积分10
14秒前
丘比特应助科研小白采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009429
求助须知:如何正确求助?哪些是违规求助? 3549323
关于积分的说明 11301690
捐赠科研通 3283833
什么是DOI,文献DOI怎么找? 1810413
邀请新用户注册赠送积分活动 886275
科研通“疑难数据库(出版商)”最低求助积分说明 811301