Investigating multi-objective fluence and beam orientation IMRT optimization

帕累托原理 放射治疗计划 计算机科学 多目标优化 数学优化 剂量学 医学物理学 放射治疗 数学 核医学 医学 放射科
作者
P Potrebko,Jason Fiege,Matthew C. Biagioli,Jan Poleszczuk
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:62 (13): 5228-5244 被引量:16
标识
DOI:10.1088/1361-6560/aa7298
摘要

Radiation Oncology treatment planning requires compromises to be made between clinical objectives that are invariably in conflict. It would be beneficial to have a 'bird's-eye-view' perspective of the full spectrum of treatment plans that represent the possible trade-offs between delivering the intended dose to the planning target volume (PTV) while optimally sparing the organs-at-risk (OARs). In this work, the authors demonstrate Pareto-aware radiotherapy evolutionary treatment optimization (PARETO), a multi-objective tool featuring such bird's-eye-view functionality, which optimizes fluence patterns and beam angles for intensity-modulated radiation therapy (IMRT) treatment planning. The problem of IMRT treatment plan optimization is managed as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. To achieve this, PARETO is built around a powerful multi-objective evolutionary algorithm, called Ferret, which simultaneously optimizes multiple fitness functions that encode the attributes of the desired dose distribution for the PTV and OARs. The graphical interfaces within PARETO provide useful information such as: the convergence behavior during optimization, trade-off plots between the competing objectives, and a graphical representation of the optimal solution database allowing for the rapid exploration of treatment plan quality through the evaluation of dose-volume histograms and isodose distributions. PARETO was evaluated for two relatively complex clinical cases, a paranasal sinus and a pancreas case. The end result of each PARETO run was a database of optimal (non-dominated) treatment plans that demonstrated trade-offs between the OAR and PTV fitness functions, which were all equally good in the Pareto-optimal sense (where no one objective can be improved without worsening at least one other). Ferret was able to produce high quality solutions even though a large number of parameters, such as beam fluence and beam angles, were included in the optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大理学子发布了新的文献求助10
刚刚
852应助Astro采纳,获得20
1秒前
skepticalsnails完成签到,获得积分0
1秒前
orchid完成签到,获得积分10
2秒前
小二郎应助钱念波采纳,获得30
6秒前
yoyo20012623完成签到,获得积分10
6秒前
sseekker完成签到 ,获得积分10
6秒前
oscar完成签到,获得积分10
7秒前
稳重的秋天完成签到,获得积分10
8秒前
ROMANTIC完成签到 ,获得积分10
9秒前
云飞扬完成签到 ,获得积分10
11秒前
香蕉觅云应助猪猪hero采纳,获得10
14秒前
小羊完成签到 ,获得积分10
16秒前
曾建完成签到 ,获得积分10
19秒前
华仔应助酷炫贞采纳,获得10
20秒前
明眸完成签到 ,获得积分10
21秒前
24秒前
陈豆豆完成签到 ,获得积分10
25秒前
LingYun完成签到,获得积分10
26秒前
amai完成签到,获得积分10
27秒前
海的呼唤完成签到,获得积分10
27秒前
西吴完成签到 ,获得积分10
30秒前
三三发布了新的文献求助10
31秒前
烟花应助猪猪hero采纳,获得10
39秒前
业务型完成签到,获得积分10
39秒前
mzhnx完成签到 ,获得积分10
42秒前
辛勤的小熊猫完成签到 ,获得积分10
43秒前
Viva完成签到,获得积分10
43秒前
xuan完成签到,获得积分10
43秒前
自由珊完成签到 ,获得积分10
44秒前
跳跃的冷卉完成签到 ,获得积分10
51秒前
Panchael完成签到,获得积分10
51秒前
1分钟前
无限的含羞草完成签到,获得积分10
1分钟前
1分钟前
三三完成签到,获得积分10
1分钟前
科研废物发布了新的文献求助10
1分钟前
研友_8yN60L完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3677865
求助须知:如何正确求助?哪些是违规求助? 3231588
关于积分的说明 9798253
捐赠科研通 2942715
什么是DOI,文献DOI怎么找? 1613494
邀请新用户注册赠送积分活动 761619
科研通“疑难数据库(出版商)”最低求助积分说明 736998