血管生成
巨噬细胞
骨整合
材料科学
钛
单核细胞
M2巨噬细胞
纳米管
纳米技术
细胞生物学
生物物理学
化学
癌症研究
免疫学
生物
生物化学
植入
体外
医学
冶金
碳纳米管
外科
作者
Jie Wang,Shi Qian,Xuanyong Liu,Lianyi Xu,Xinchao Miao,Zhenyao Xu,Lingyan Cao,Honglin Wang,Xinquan Jiang
摘要
The monocyte/macrophage system plays an essential role in the host response and the fate of endosseous implanted materials. Macrophage behavior was thought to be regulated by nanostructured titanium which has been considered as a very promising candidate for dental implants. However, there is little known for subsequent effects of these activated macrophages on osteogenesis and angiogenesis which were essential for bone integration. Here we presented two different dimensions of titanium nanotubes generated by anodic oxidation at 10 V (NT 10) and 20 V (NT 20), respectively. The behavior of macrophages on the surfaces was evaluated, and their conditioned medium (CM) was collected to stimulate MC3T3 and HUVECs, with commercially pure titanium (cp Ti) as control. We found that NT 20 induced macrophage activation similar to the anti-inflammatory M2 macrophage state with the enhanced expression of IL-10 and ARG, while NT 10 was associated with M1 macrophage phenotype characterized by high levels of IL-1β, iNOS and TNF-α. Furthermore, the osteogenic capacity of MC3T3 in CM from NT 20 was enhanced (NT 20 > NT 10 ≈ cp Ti) and the tube formation capacity of HUVECs was promoted in CM from nanotubular surfaces with increasing tube dimensions (NT 20 > NT 10 > cp Ti). Our data suggest that dental implants with the large nanotube dimension surface could result in a favorable osteoimmunomodulatory microenvironment for the establishment of osseointegration.
科研通智能强力驱动
Strongly Powered by AbleSci AI